Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the equation of the line that is parallel to the given line and passes through the point [tex]\((-2, 2)\)[/tex], we must follow these steps:
1. Identify the slope of the given line. The general form of the line equation [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope. Looking at the given equation [tex]\(y = \frac{1}{5} x + 4\)[/tex], we see that the slope [tex]\(m\)[/tex] is [tex]\(\frac{1}{5}\)[/tex].
2. Recognize that a line parallel to the given line will have the same slope. Therefore, the slope of our new line will also be [tex]\(\frac{1}{5}\)[/tex].
3. Next, we need to find the y-intercept [tex]\(b\)[/tex] for our new line. We have the slope [tex]\(m = \frac{1}{5}\)[/tex] and a point [tex]\((-2, 2)\)[/tex] through which the line passes.
4. Substitute the point [tex]\((-2, 2)\)[/tex] into the equation [tex]\(y = mx + b\)[/tex] to find the y-intercept [tex]\(b\)[/tex]:
[tex]\[ 2 = \frac{1}{5}(-2) + b \][/tex]
5. Solve for [tex]\(b\)[/tex]:
[tex]\[ 2 = -\frac{2}{5} + b \][/tex]
To isolate [tex]\(b\)[/tex], add [tex]\(\frac{2}{5}\)[/tex] to both sides:
[tex]\[ 2 + \frac{2}{5} = b \][/tex]
6. Convert [tex]\(2\)[/tex] to a fraction with a common denominator to facilitate addition:
[tex]\[ 2 = \frac{10}{5} \][/tex]
Thus,
[tex]\[ \frac{10}{5} + \frac{2}{5} = b \][/tex]
7. Add the fractions:
[tex]\[ b = \frac{12}{5} \][/tex]
8. Substitute the slope [tex]\(m = \frac{1}{5}\)[/tex] and the y-intercept [tex]\(b = \frac{12}{5}\)[/tex] back into the slope-intercept form of the line equation:
[tex]\[ y = \frac{1}{5} x + \frac{12}{5} \][/tex]
Therefore, the equation of the line that is parallel to the given line and passes through the point [tex]\((-2, 2)\)[/tex] is:
[tex]\[ y = \frac{1}{5} x + \frac{12}{5} \][/tex]
1. Identify the slope of the given line. The general form of the line equation [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope. Looking at the given equation [tex]\(y = \frac{1}{5} x + 4\)[/tex], we see that the slope [tex]\(m\)[/tex] is [tex]\(\frac{1}{5}\)[/tex].
2. Recognize that a line parallel to the given line will have the same slope. Therefore, the slope of our new line will also be [tex]\(\frac{1}{5}\)[/tex].
3. Next, we need to find the y-intercept [tex]\(b\)[/tex] for our new line. We have the slope [tex]\(m = \frac{1}{5}\)[/tex] and a point [tex]\((-2, 2)\)[/tex] through which the line passes.
4. Substitute the point [tex]\((-2, 2)\)[/tex] into the equation [tex]\(y = mx + b\)[/tex] to find the y-intercept [tex]\(b\)[/tex]:
[tex]\[ 2 = \frac{1}{5}(-2) + b \][/tex]
5. Solve for [tex]\(b\)[/tex]:
[tex]\[ 2 = -\frac{2}{5} + b \][/tex]
To isolate [tex]\(b\)[/tex], add [tex]\(\frac{2}{5}\)[/tex] to both sides:
[tex]\[ 2 + \frac{2}{5} = b \][/tex]
6. Convert [tex]\(2\)[/tex] to a fraction with a common denominator to facilitate addition:
[tex]\[ 2 = \frac{10}{5} \][/tex]
Thus,
[tex]\[ \frac{10}{5} + \frac{2}{5} = b \][/tex]
7. Add the fractions:
[tex]\[ b = \frac{12}{5} \][/tex]
8. Substitute the slope [tex]\(m = \frac{1}{5}\)[/tex] and the y-intercept [tex]\(b = \frac{12}{5}\)[/tex] back into the slope-intercept form of the line equation:
[tex]\[ y = \frac{1}{5} x + \frac{12}{5} \][/tex]
Therefore, the equation of the line that is parallel to the given line and passes through the point [tex]\((-2, 2)\)[/tex] is:
[tex]\[ y = \frac{1}{5} x + \frac{12}{5} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.