Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the speed of the transverse wave represented by the equation:
[tex]\[ y(x, t) = 8.0 \sin \left(0.5 \pi x - 4 \pi t - \frac{\pi}{4} \right), \][/tex]
we begin by identifying the standard form of a wave equation. The standard form of a sinusoidal wave traveling along the x-axis is:
[tex]\[ y(x, t) = A \sin (k x - \omega t + \phi), \][/tex]
where:
- [tex]\( A \)[/tex] is the amplitude of the wave,
- [tex]\( k \)[/tex] is the wave number,
- [tex]\( \omega \)[/tex] (omega) is the angular frequency,
- [tex]\( \phi \)[/tex] is the phase constant.
Comparing the given wave equation with the standard form, we can see:
- The amplitude [tex]\( A \)[/tex] is 8.0,
- The wave number [tex]\( k \)[/tex] is [tex]\( 0.5 \pi \)[/tex],
- The angular frequency [tex]\( \omega \)[/tex] is [tex]\( 4 \pi \)[/tex],
- The phase constant [tex]\( \phi \)[/tex] is [tex]\( -\frac{\pi}{4} \)[/tex].
To find the speed [tex]\( v \)[/tex] of the wave, we use the relationship between the angular frequency, wave number, and wave speed:
[tex]\[ v = \frac{\omega}{k}. \][/tex]
Substituting the given values for [tex]\( k \)[/tex] and [tex]\( \omega \)[/tex]:
[tex]\[ k = 0.5 \pi \][/tex]
[tex]\[ \omega = 4 \pi \][/tex]
So the speed [tex]\( v \)[/tex] is:
[tex]\[ v = \frac{\omega}{k} = \frac{4 \pi}{0.5 \pi}. \][/tex]
Simplifying this, we get:
[tex]\[ v = \frac{4 \pi}{0.5 \pi} = \frac{4}{0.5} = 8. \][/tex]
Thus, the speed of the wave is:
[tex]\[ v = 8.0 \, \text{meters per second}. \][/tex]
[tex]\[ y(x, t) = 8.0 \sin \left(0.5 \pi x - 4 \pi t - \frac{\pi}{4} \right), \][/tex]
we begin by identifying the standard form of a wave equation. The standard form of a sinusoidal wave traveling along the x-axis is:
[tex]\[ y(x, t) = A \sin (k x - \omega t + \phi), \][/tex]
where:
- [tex]\( A \)[/tex] is the amplitude of the wave,
- [tex]\( k \)[/tex] is the wave number,
- [tex]\( \omega \)[/tex] (omega) is the angular frequency,
- [tex]\( \phi \)[/tex] is the phase constant.
Comparing the given wave equation with the standard form, we can see:
- The amplitude [tex]\( A \)[/tex] is 8.0,
- The wave number [tex]\( k \)[/tex] is [tex]\( 0.5 \pi \)[/tex],
- The angular frequency [tex]\( \omega \)[/tex] is [tex]\( 4 \pi \)[/tex],
- The phase constant [tex]\( \phi \)[/tex] is [tex]\( -\frac{\pi}{4} \)[/tex].
To find the speed [tex]\( v \)[/tex] of the wave, we use the relationship between the angular frequency, wave number, and wave speed:
[tex]\[ v = \frac{\omega}{k}. \][/tex]
Substituting the given values for [tex]\( k \)[/tex] and [tex]\( \omega \)[/tex]:
[tex]\[ k = 0.5 \pi \][/tex]
[tex]\[ \omega = 4 \pi \][/tex]
So the speed [tex]\( v \)[/tex] is:
[tex]\[ v = \frac{\omega}{k} = \frac{4 \pi}{0.5 \pi}. \][/tex]
Simplifying this, we get:
[tex]\[ v = \frac{4 \pi}{0.5 \pi} = \frac{4}{0.5} = 8. \][/tex]
Thus, the speed of the wave is:
[tex]\[ v = 8.0 \, \text{meters per second}. \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.