Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the speed of the transverse wave represented by the equation:
[tex]\[ y(x, t) = 8.0 \sin \left(0.5 \pi x - 4 \pi t - \frac{\pi}{4} \right), \][/tex]
we begin by identifying the standard form of a wave equation. The standard form of a sinusoidal wave traveling along the x-axis is:
[tex]\[ y(x, t) = A \sin (k x - \omega t + \phi), \][/tex]
where:
- [tex]\( A \)[/tex] is the amplitude of the wave,
- [tex]\( k \)[/tex] is the wave number,
- [tex]\( \omega \)[/tex] (omega) is the angular frequency,
- [tex]\( \phi \)[/tex] is the phase constant.
Comparing the given wave equation with the standard form, we can see:
- The amplitude [tex]\( A \)[/tex] is 8.0,
- The wave number [tex]\( k \)[/tex] is [tex]\( 0.5 \pi \)[/tex],
- The angular frequency [tex]\( \omega \)[/tex] is [tex]\( 4 \pi \)[/tex],
- The phase constant [tex]\( \phi \)[/tex] is [tex]\( -\frac{\pi}{4} \)[/tex].
To find the speed [tex]\( v \)[/tex] of the wave, we use the relationship between the angular frequency, wave number, and wave speed:
[tex]\[ v = \frac{\omega}{k}. \][/tex]
Substituting the given values for [tex]\( k \)[/tex] and [tex]\( \omega \)[/tex]:
[tex]\[ k = 0.5 \pi \][/tex]
[tex]\[ \omega = 4 \pi \][/tex]
So the speed [tex]\( v \)[/tex] is:
[tex]\[ v = \frac{\omega}{k} = \frac{4 \pi}{0.5 \pi}. \][/tex]
Simplifying this, we get:
[tex]\[ v = \frac{4 \pi}{0.5 \pi} = \frac{4}{0.5} = 8. \][/tex]
Thus, the speed of the wave is:
[tex]\[ v = 8.0 \, \text{meters per second}. \][/tex]
[tex]\[ y(x, t) = 8.0 \sin \left(0.5 \pi x - 4 \pi t - \frac{\pi}{4} \right), \][/tex]
we begin by identifying the standard form of a wave equation. The standard form of a sinusoidal wave traveling along the x-axis is:
[tex]\[ y(x, t) = A \sin (k x - \omega t + \phi), \][/tex]
where:
- [tex]\( A \)[/tex] is the amplitude of the wave,
- [tex]\( k \)[/tex] is the wave number,
- [tex]\( \omega \)[/tex] (omega) is the angular frequency,
- [tex]\( \phi \)[/tex] is the phase constant.
Comparing the given wave equation with the standard form, we can see:
- The amplitude [tex]\( A \)[/tex] is 8.0,
- The wave number [tex]\( k \)[/tex] is [tex]\( 0.5 \pi \)[/tex],
- The angular frequency [tex]\( \omega \)[/tex] is [tex]\( 4 \pi \)[/tex],
- The phase constant [tex]\( \phi \)[/tex] is [tex]\( -\frac{\pi}{4} \)[/tex].
To find the speed [tex]\( v \)[/tex] of the wave, we use the relationship between the angular frequency, wave number, and wave speed:
[tex]\[ v = \frac{\omega}{k}. \][/tex]
Substituting the given values for [tex]\( k \)[/tex] and [tex]\( \omega \)[/tex]:
[tex]\[ k = 0.5 \pi \][/tex]
[tex]\[ \omega = 4 \pi \][/tex]
So the speed [tex]\( v \)[/tex] is:
[tex]\[ v = \frac{\omega}{k} = \frac{4 \pi}{0.5 \pi}. \][/tex]
Simplifying this, we get:
[tex]\[ v = \frac{4 \pi}{0.5 \pi} = \frac{4}{0.5} = 8. \][/tex]
Thus, the speed of the wave is:
[tex]\[ v = 8.0 \, \text{meters per second}. \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.