Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the speed of the transverse wave represented by the equation:
[tex]\[ y(x, t) = 8.0 \sin \left(0.5 \pi x - 4 \pi t - \frac{\pi}{4} \right), \][/tex]
we begin by identifying the standard form of a wave equation. The standard form of a sinusoidal wave traveling along the x-axis is:
[tex]\[ y(x, t) = A \sin (k x - \omega t + \phi), \][/tex]
where:
- [tex]\( A \)[/tex] is the amplitude of the wave,
- [tex]\( k \)[/tex] is the wave number,
- [tex]\( \omega \)[/tex] (omega) is the angular frequency,
- [tex]\( \phi \)[/tex] is the phase constant.
Comparing the given wave equation with the standard form, we can see:
- The amplitude [tex]\( A \)[/tex] is 8.0,
- The wave number [tex]\( k \)[/tex] is [tex]\( 0.5 \pi \)[/tex],
- The angular frequency [tex]\( \omega \)[/tex] is [tex]\( 4 \pi \)[/tex],
- The phase constant [tex]\( \phi \)[/tex] is [tex]\( -\frac{\pi}{4} \)[/tex].
To find the speed [tex]\( v \)[/tex] of the wave, we use the relationship between the angular frequency, wave number, and wave speed:
[tex]\[ v = \frac{\omega}{k}. \][/tex]
Substituting the given values for [tex]\( k \)[/tex] and [tex]\( \omega \)[/tex]:
[tex]\[ k = 0.5 \pi \][/tex]
[tex]\[ \omega = 4 \pi \][/tex]
So the speed [tex]\( v \)[/tex] is:
[tex]\[ v = \frac{\omega}{k} = \frac{4 \pi}{0.5 \pi}. \][/tex]
Simplifying this, we get:
[tex]\[ v = \frac{4 \pi}{0.5 \pi} = \frac{4}{0.5} = 8. \][/tex]
Thus, the speed of the wave is:
[tex]\[ v = 8.0 \, \text{meters per second}. \][/tex]
[tex]\[ y(x, t) = 8.0 \sin \left(0.5 \pi x - 4 \pi t - \frac{\pi}{4} \right), \][/tex]
we begin by identifying the standard form of a wave equation. The standard form of a sinusoidal wave traveling along the x-axis is:
[tex]\[ y(x, t) = A \sin (k x - \omega t + \phi), \][/tex]
where:
- [tex]\( A \)[/tex] is the amplitude of the wave,
- [tex]\( k \)[/tex] is the wave number,
- [tex]\( \omega \)[/tex] (omega) is the angular frequency,
- [tex]\( \phi \)[/tex] is the phase constant.
Comparing the given wave equation with the standard form, we can see:
- The amplitude [tex]\( A \)[/tex] is 8.0,
- The wave number [tex]\( k \)[/tex] is [tex]\( 0.5 \pi \)[/tex],
- The angular frequency [tex]\( \omega \)[/tex] is [tex]\( 4 \pi \)[/tex],
- The phase constant [tex]\( \phi \)[/tex] is [tex]\( -\frac{\pi}{4} \)[/tex].
To find the speed [tex]\( v \)[/tex] of the wave, we use the relationship between the angular frequency, wave number, and wave speed:
[tex]\[ v = \frac{\omega}{k}. \][/tex]
Substituting the given values for [tex]\( k \)[/tex] and [tex]\( \omega \)[/tex]:
[tex]\[ k = 0.5 \pi \][/tex]
[tex]\[ \omega = 4 \pi \][/tex]
So the speed [tex]\( v \)[/tex] is:
[tex]\[ v = \frac{\omega}{k} = \frac{4 \pi}{0.5 \pi}. \][/tex]
Simplifying this, we get:
[tex]\[ v = \frac{4 \pi}{0.5 \pi} = \frac{4}{0.5} = 8. \][/tex]
Thus, the speed of the wave is:
[tex]\[ v = 8.0 \, \text{meters per second}. \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.