Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the distance between the points [tex]\((-4, -7)\)[/tex] and [tex]\((-8, -13)\)[/tex] on the coordinate plane, we can use the distance formula, which is derived from the Pythagorean Theorem. The distance formula is given by:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Here, the coordinates of the two points are:
- [tex]\((x_1, y_1) = (-4, -7)\)[/tex]
- [tex]\((x_2, y_2) = (-8, -13)\)[/tex]
First, let's calculate the differences in the x-coordinates ([tex]\(dx\)[/tex]) and y-coordinates ([tex]\(dy\)[/tex]):
[tex]\[ dx = x_2 - x_1 = -8 - (-4) = -8 + 4 = -4 \][/tex]
[tex]\[ dy = y_2 - y_1 = -13 - (-7) = -13 + 7 = -6 \][/tex]
Next, we square these differences:
[tex]\[ dx^2 = (-4)^2 = 16 \][/tex]
[tex]\[ dy^2 = (-6)^2 = 36 \][/tex]
We then add these squared differences together:
[tex]\[ dx^2 + dy^2 = 16 + 36 = 52 \][/tex]
Finally, we take the square root of this sum to find the distance:
[tex]\[ d = \sqrt{52} \][/tex]
Therefore, the distance between the points [tex]\((-4, -7)\)[/tex] and [tex]\((-8, -13)\)[/tex] is [tex]\(\sqrt{52}\)[/tex] units.
Thus, the correct answer is:
[tex]\[ \sqrt{52} \text{ units} \][/tex]
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Here, the coordinates of the two points are:
- [tex]\((x_1, y_1) = (-4, -7)\)[/tex]
- [tex]\((x_2, y_2) = (-8, -13)\)[/tex]
First, let's calculate the differences in the x-coordinates ([tex]\(dx\)[/tex]) and y-coordinates ([tex]\(dy\)[/tex]):
[tex]\[ dx = x_2 - x_1 = -8 - (-4) = -8 + 4 = -4 \][/tex]
[tex]\[ dy = y_2 - y_1 = -13 - (-7) = -13 + 7 = -6 \][/tex]
Next, we square these differences:
[tex]\[ dx^2 = (-4)^2 = 16 \][/tex]
[tex]\[ dy^2 = (-6)^2 = 36 \][/tex]
We then add these squared differences together:
[tex]\[ dx^2 + dy^2 = 16 + 36 = 52 \][/tex]
Finally, we take the square root of this sum to find the distance:
[tex]\[ d = \sqrt{52} \][/tex]
Therefore, the distance between the points [tex]\((-4, -7)\)[/tex] and [tex]\((-8, -13)\)[/tex] is [tex]\(\sqrt{52}\)[/tex] units.
Thus, the correct answer is:
[tex]\[ \sqrt{52} \text{ units} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.