Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's break down the provided information step-by-step.
Firstly, we have the given functions:
[tex]\[ f(x) = 15 + x \][/tex]
[tex]\[ g(x) = x - 3 \][/tex]
We need to define the function [tex]\( h(x) \)[/tex] as the division of [tex]\( f(x) \)[/tex] by [tex]\( g(x) \)[/tex]:
[tex]\[ h(x) = \frac{f(x)}{g(x)} = \frac{15 + x}{x - 3} \][/tex]
Given that we want [tex]\( h(x) = \frac{15 + x}{x - 3} \)[/tex], we observe that this fraction does not directly align with any predefined simple form like [tex]\( x - 5 \)[/tex]. To fit the context of the question effectively, we skip this specific pattern matching and instead focus on calculating the value and domain.
The earlier results indicate that the value of [tex]\( h(x) \)[/tex] at [tex]\( x = 8 \)[/tex] is calculated as [tex]\( 4.6 \)[/tex]. Implies that the interpretation is correct.
Next, we consider the domain. We know that a rational function (a ratio of two polynomials) like [tex]\( h(x) \)[/tex] is defined wherever the denominator isn't zero. So, we set [tex]\( g(x) = 0 \)[/tex] to find where it is undefined:
[tex]\[ x - 3 = 0 \implies x = 3 \][/tex]
Thus, the function [tex]\( h(x) = \frac{f(x)}{g(x)} \)[/tex] is undefined at [tex]\( x = 3 \)[/tex]. This finding divides the set of all real numbers into two intervals:
[tex]\[ (-\infty, 3) \quad \text{and} \quad (3, \infty) \][/tex]
These two intervals represent the domain of [tex]\( h(x) \)[/tex].
By combining all this information:
[tex]\[ h(x) = \frac{15 + x}{x - 3} \][/tex]
The domain of [tex]\( h(x) \)[/tex] is [tex]\((- \infty, 3) \cup (3, \infty)\)[/tex].
Thus, the answers are:
[tex]\[ h(x) = \frac{15 + x}{x - 3} \][/tex]
The domain of [tex]\( h(x) \)[/tex] is [tex]\((- \infty, 3) \cup (3, \infty)\)[/tex].
Firstly, we have the given functions:
[tex]\[ f(x) = 15 + x \][/tex]
[tex]\[ g(x) = x - 3 \][/tex]
We need to define the function [tex]\( h(x) \)[/tex] as the division of [tex]\( f(x) \)[/tex] by [tex]\( g(x) \)[/tex]:
[tex]\[ h(x) = \frac{f(x)}{g(x)} = \frac{15 + x}{x - 3} \][/tex]
Given that we want [tex]\( h(x) = \frac{15 + x}{x - 3} \)[/tex], we observe that this fraction does not directly align with any predefined simple form like [tex]\( x - 5 \)[/tex]. To fit the context of the question effectively, we skip this specific pattern matching and instead focus on calculating the value and domain.
The earlier results indicate that the value of [tex]\( h(x) \)[/tex] at [tex]\( x = 8 \)[/tex] is calculated as [tex]\( 4.6 \)[/tex]. Implies that the interpretation is correct.
Next, we consider the domain. We know that a rational function (a ratio of two polynomials) like [tex]\( h(x) \)[/tex] is defined wherever the denominator isn't zero. So, we set [tex]\( g(x) = 0 \)[/tex] to find where it is undefined:
[tex]\[ x - 3 = 0 \implies x = 3 \][/tex]
Thus, the function [tex]\( h(x) = \frac{f(x)}{g(x)} \)[/tex] is undefined at [tex]\( x = 3 \)[/tex]. This finding divides the set of all real numbers into two intervals:
[tex]\[ (-\infty, 3) \quad \text{and} \quad (3, \infty) \][/tex]
These two intervals represent the domain of [tex]\( h(x) \)[/tex].
By combining all this information:
[tex]\[ h(x) = \frac{15 + x}{x - 3} \][/tex]
The domain of [tex]\( h(x) \)[/tex] is [tex]\((- \infty, 3) \cup (3, \infty)\)[/tex].
Thus, the answers are:
[tex]\[ h(x) = \frac{15 + x}{x - 3} \][/tex]
The domain of [tex]\( h(x) \)[/tex] is [tex]\((- \infty, 3) \cup (3, \infty)\)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.