Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the center of the circle represented by the equation [tex]\((x+9)^2 + (y-6)^2 = 10^2\)[/tex], we need to understand the standard form of a circle's equation. The general form of a circle's equation is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
where [tex]\((h, k)\)[/tex] is the center of the circle and [tex]\(r\)[/tex] is its radius.
Now, let's compare the given equation with the standard form step-by-step:
1. Identify the parts of the standard form in the given equation:
[tex]\[ (x + 9)^2 + (y - 6)^2 = 10^2 \][/tex]
2. Recall that in the standard form [tex]\((x - h)\)[/tex] and [tex]\((y - k)\)[/tex], [tex]\(h\)[/tex] and [tex]\(k\)[/tex] are the coordinates of the center, but with signs opposite to those in the equation due to the form [tex]\((x - h)\)[/tex] and [tex]\((y - k)\)[/tex].
3. For [tex]\(x\)[/tex]:
- In [tex]\((x - h)^2\)[/tex], we have [tex]\((x + 9)^2\)[/tex] in our given equation.
- This indicates [tex]\(x - h = x + 9\)[/tex], which means [tex]\(h = -9\)[/tex].
4. For [tex]\(y\)[/tex]:
- In [tex]\((y - k)^2\)[/tex], we have [tex]\((y - 6)^2\)[/tex] in our given equation.
- This indicates [tex]\(y - k = y - 6\)[/tex], which means [tex]\(k = 6\)[/tex].
So, the center [tex]\((h, k)\)[/tex] of the circle is [tex]\((-9, 6)\)[/tex].
Thus, the correct answer is:
[tex]\[ (-9, 6) \][/tex]
This result matches the provided options, confirming that the center of the circle is [tex]\((-9, 6)\)[/tex].
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
where [tex]\((h, k)\)[/tex] is the center of the circle and [tex]\(r\)[/tex] is its radius.
Now, let's compare the given equation with the standard form step-by-step:
1. Identify the parts of the standard form in the given equation:
[tex]\[ (x + 9)^2 + (y - 6)^2 = 10^2 \][/tex]
2. Recall that in the standard form [tex]\((x - h)\)[/tex] and [tex]\((y - k)\)[/tex], [tex]\(h\)[/tex] and [tex]\(k\)[/tex] are the coordinates of the center, but with signs opposite to those in the equation due to the form [tex]\((x - h)\)[/tex] and [tex]\((y - k)\)[/tex].
3. For [tex]\(x\)[/tex]:
- In [tex]\((x - h)^2\)[/tex], we have [tex]\((x + 9)^2\)[/tex] in our given equation.
- This indicates [tex]\(x - h = x + 9\)[/tex], which means [tex]\(h = -9\)[/tex].
4. For [tex]\(y\)[/tex]:
- In [tex]\((y - k)^2\)[/tex], we have [tex]\((y - 6)^2\)[/tex] in our given equation.
- This indicates [tex]\(y - k = y - 6\)[/tex], which means [tex]\(k = 6\)[/tex].
So, the center [tex]\((h, k)\)[/tex] of the circle is [tex]\((-9, 6)\)[/tex].
Thus, the correct answer is:
[tex]\[ (-9, 6) \][/tex]
This result matches the provided options, confirming that the center of the circle is [tex]\((-9, 6)\)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.