Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To simplify [tex]\(\sqrt{75 x^{10}}\)[/tex], we will break it down into manageable steps.
1. Factor the number inside the square root:
[tex]\[ 75 = 25 \times 3 \][/tex]
Therefore, we can rewrite [tex]\(\sqrt{75 x^{10}}\)[/tex] as:
[tex]\[ \sqrt{75 x^{10}} = \sqrt{25 \times 3 \times x^{10}} \][/tex]
2. Use the property of square roots to split the expression:
[tex]\[ \sqrt{25 \times 3 \times x^{10}} = \sqrt{25} \times \sqrt{3} \times \sqrt{x^{10}} \][/tex]
3. Evaluate each square root individually:
- [tex]\(\sqrt{25} = 5\)[/tex] because 25 is a perfect square.
- [tex]\(\sqrt{3}\)[/tex] remains [tex]\(\sqrt{3}\)[/tex] because it is an irrational number.
- For [tex]\(\sqrt{x^{10}}\)[/tex], we use the property of exponents and square roots: [tex]\(\sqrt{x^{10}} = (x^{10})^{1/2} = x^{10 \times \frac{1}{2}} = x^5\)[/tex].
4. Combine all parts:
[tex]\[ \sqrt{25} \times \sqrt{3} \times \sqrt{x^{10}} = 5 \times \sqrt{3} \times x^5 \][/tex]
Thus, the simplified form of [tex]\(\sqrt{75 x^{10}}\)[/tex] is:
[tex]\[ 5 \sqrt{3} x^5 \][/tex]
1. Factor the number inside the square root:
[tex]\[ 75 = 25 \times 3 \][/tex]
Therefore, we can rewrite [tex]\(\sqrt{75 x^{10}}\)[/tex] as:
[tex]\[ \sqrt{75 x^{10}} = \sqrt{25 \times 3 \times x^{10}} \][/tex]
2. Use the property of square roots to split the expression:
[tex]\[ \sqrt{25 \times 3 \times x^{10}} = \sqrt{25} \times \sqrt{3} \times \sqrt{x^{10}} \][/tex]
3. Evaluate each square root individually:
- [tex]\(\sqrt{25} = 5\)[/tex] because 25 is a perfect square.
- [tex]\(\sqrt{3}\)[/tex] remains [tex]\(\sqrt{3}\)[/tex] because it is an irrational number.
- For [tex]\(\sqrt{x^{10}}\)[/tex], we use the property of exponents and square roots: [tex]\(\sqrt{x^{10}} = (x^{10})^{1/2} = x^{10 \times \frac{1}{2}} = x^5\)[/tex].
4. Combine all parts:
[tex]\[ \sqrt{25} \times \sqrt{3} \times \sqrt{x^{10}} = 5 \times \sqrt{3} \times x^5 \][/tex]
Thus, the simplified form of [tex]\(\sqrt{75 x^{10}}\)[/tex] is:
[tex]\[ 5 \sqrt{3} x^5 \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.