Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure, let's go through this step-by-step.
1. We know that Point A and Point B are 50 meters apart.
2. The temperature at Point A is 60°C.
3. The temperature at Point B is 55°C.
To find the temperature gradient between the two points, we use the formula for temperature gradient:
[tex]\[ \text{Temperature Gradient} = \frac{\text{Temperature difference between the points}}{\text{Distance between the points}} \][/tex]
4. The temperature difference between Point A and Point B is:
[tex]\[ 60°C - 55°C = 5°C \][/tex]
5. The distance between the points is 50 meters.
6. Dividing the temperature difference by the distance gives the temperature gradient:
[tex]\[ \text{Temperature Gradient} = \frac{5°C}{50 \text{ meters}} = 0.1°C \text{ per meter} \][/tex]
So, the temperature gradient between the points is 0.1°C per meter.
Now, for the second part:
If the mantle and the crust were closer to each other, assuming other conditions remain constant, the temperature gradient between the two would be:
- Larger. Temperature gradients increase when the same change in temperature occurs over a shorter distance. Thus, if the mantle and the crust were closer together, the temperature change per unit distance would be greater.
1. We know that Point A and Point B are 50 meters apart.
2. The temperature at Point A is 60°C.
3. The temperature at Point B is 55°C.
To find the temperature gradient between the two points, we use the formula for temperature gradient:
[tex]\[ \text{Temperature Gradient} = \frac{\text{Temperature difference between the points}}{\text{Distance between the points}} \][/tex]
4. The temperature difference between Point A and Point B is:
[tex]\[ 60°C - 55°C = 5°C \][/tex]
5. The distance between the points is 50 meters.
6. Dividing the temperature difference by the distance gives the temperature gradient:
[tex]\[ \text{Temperature Gradient} = \frac{5°C}{50 \text{ meters}} = 0.1°C \text{ per meter} \][/tex]
So, the temperature gradient between the points is 0.1°C per meter.
Now, for the second part:
If the mantle and the crust were closer to each other, assuming other conditions remain constant, the temperature gradient between the two would be:
- Larger. Temperature gradients increase when the same change in temperature occurs over a shorter distance. Thus, if the mantle and the crust were closer together, the temperature change per unit distance would be greater.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.