Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure, let's go through this step-by-step.
1. We know that Point A and Point B are 50 meters apart.
2. The temperature at Point A is 60°C.
3. The temperature at Point B is 55°C.
To find the temperature gradient between the two points, we use the formula for temperature gradient:
[tex]\[ \text{Temperature Gradient} = \frac{\text{Temperature difference between the points}}{\text{Distance between the points}} \][/tex]
4. The temperature difference between Point A and Point B is:
[tex]\[ 60°C - 55°C = 5°C \][/tex]
5. The distance between the points is 50 meters.
6. Dividing the temperature difference by the distance gives the temperature gradient:
[tex]\[ \text{Temperature Gradient} = \frac{5°C}{50 \text{ meters}} = 0.1°C \text{ per meter} \][/tex]
So, the temperature gradient between the points is 0.1°C per meter.
Now, for the second part:
If the mantle and the crust were closer to each other, assuming other conditions remain constant, the temperature gradient between the two would be:
- Larger. Temperature gradients increase when the same change in temperature occurs over a shorter distance. Thus, if the mantle and the crust were closer together, the temperature change per unit distance would be greater.
1. We know that Point A and Point B are 50 meters apart.
2. The temperature at Point A is 60°C.
3. The temperature at Point B is 55°C.
To find the temperature gradient between the two points, we use the formula for temperature gradient:
[tex]\[ \text{Temperature Gradient} = \frac{\text{Temperature difference between the points}}{\text{Distance between the points}} \][/tex]
4. The temperature difference between Point A and Point B is:
[tex]\[ 60°C - 55°C = 5°C \][/tex]
5. The distance between the points is 50 meters.
6. Dividing the temperature difference by the distance gives the temperature gradient:
[tex]\[ \text{Temperature Gradient} = \frac{5°C}{50 \text{ meters}} = 0.1°C \text{ per meter} \][/tex]
So, the temperature gradient between the points is 0.1°C per meter.
Now, for the second part:
If the mantle and the crust were closer to each other, assuming other conditions remain constant, the temperature gradient between the two would be:
- Larger. Temperature gradients increase when the same change in temperature occurs over a shorter distance. Thus, if the mantle and the crust were closer together, the temperature change per unit distance would be greater.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.