Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the height at which a 6 kg weight is lifted to give it a gravitational potential energy of 70.56 joules, we can use the formula for gravitational potential energy:
[tex]\[ \text{Potential Energy} (PE) = \text{mass} (m) \times \text{gravitational acceleration} (g) \times \text{height} (h) \][/tex]
Given the values:
- Mass ([tex]\( m \)[/tex]) = 6 kg
- Gravitational acceleration ([tex]\( g \)[/tex]) = 9.8 m/s²
- Potential energy ([tex]\( PE \)[/tex]) = 70.56 J
We need to solve for the height ([tex]\( h \)[/tex]). Rearrange the formula to solve for [tex]\( h \)[/tex]:
[tex]\[ h = \frac{\text{Potential Energy}}{\text{mass} \times \text{gravitational acceleration}} \][/tex]
Substitute the given values into the formula:
[tex]\[ h = \frac{70.56 \, \text{J}}{6 \, \text{kg} \times 9.8 \, \text{m/s}^2} \][/tex]
Simplify:
[tex]\[ h = \frac{70.56}{58.8} \][/tex]
[tex]\[ h = 1.2 \, \text{m} \][/tex]
Therefore, the height at which the 6 kg weight is lifted to give it 70.56 joules of gravitational potential energy is:
[tex]\[ \boxed{1.2 \, \text{m}} \][/tex]
So the correct answer is:
B. 1.2 m
[tex]\[ \text{Potential Energy} (PE) = \text{mass} (m) \times \text{gravitational acceleration} (g) \times \text{height} (h) \][/tex]
Given the values:
- Mass ([tex]\( m \)[/tex]) = 6 kg
- Gravitational acceleration ([tex]\( g \)[/tex]) = 9.8 m/s²
- Potential energy ([tex]\( PE \)[/tex]) = 70.56 J
We need to solve for the height ([tex]\( h \)[/tex]). Rearrange the formula to solve for [tex]\( h \)[/tex]:
[tex]\[ h = \frac{\text{Potential Energy}}{\text{mass} \times \text{gravitational acceleration}} \][/tex]
Substitute the given values into the formula:
[tex]\[ h = \frac{70.56 \, \text{J}}{6 \, \text{kg} \times 9.8 \, \text{m/s}^2} \][/tex]
Simplify:
[tex]\[ h = \frac{70.56}{58.8} \][/tex]
[tex]\[ h = 1.2 \, \text{m} \][/tex]
Therefore, the height at which the 6 kg weight is lifted to give it 70.56 joules of gravitational potential energy is:
[tex]\[ \boxed{1.2 \, \text{m}} \][/tex]
So the correct answer is:
B. 1.2 m
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.