Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine how much gravitational potential energy is added to the picture frame when it is lifted from a height of [tex]$0.5 \text{ meters}$[/tex] to a height of [tex]$1.3 \text{ meters}$[/tex], we need to follow these steps:
1. Calculate the initial gravitational potential energy:
The formula for gravitational potential energy (GPE) is:
[tex]\[ GPE = m \cdot g \cdot h \][/tex]
Where:
- [tex]\( m \)[/tex] is the mass of the object (in kilograms)
- [tex]\( g \)[/tex] is the acceleration due to gravity (in meters per second squared)
- [tex]\( h \)[/tex] is the height above the reference point (in meters)
For the initial height ([tex]\( h = 0.5 \text{ meters} \)[/tex]):
[tex]\[ GPE_{\text{initial}} = 2 \, \text{kg} \cdot 9.8 \, \text{m/s}^2 \cdot 0.5 \, \text{m} = 9.8 \, \text{J} \][/tex]
2. Calculate the final gravitational potential energy:
For the final height ([tex]\( h = 1.3 \text{ meters} \)[/tex]):
[tex]\[ GPE_{\text{final}} = 2 \, \text{kg} \cdot 9.8 \, \text{m/s}^2 \cdot 1.3 \, \text{m} = 25.48 \, \text{J} \][/tex]
3. Determine the change in gravitational potential energy:
The change in gravitational potential energy ([tex]\( \Delta GPE \)[/tex]) is the difference between the final and initial GPE:
[tex]\[ \Delta GPE = GPE_{\text{final}} - GPE_{\text{initial}} = 25.48 \, \text{J} - 9.8 \, \text{J} = 15.68 \, \text{J} \][/tex]
Therefore, the amount of gravitational potential energy added to the picture frame when it is lifted to a shelf of height 1.3 meters is:
A. [tex]\( 15.68 \, \text{J} \)[/tex]
1. Calculate the initial gravitational potential energy:
The formula for gravitational potential energy (GPE) is:
[tex]\[ GPE = m \cdot g \cdot h \][/tex]
Where:
- [tex]\( m \)[/tex] is the mass of the object (in kilograms)
- [tex]\( g \)[/tex] is the acceleration due to gravity (in meters per second squared)
- [tex]\( h \)[/tex] is the height above the reference point (in meters)
For the initial height ([tex]\( h = 0.5 \text{ meters} \)[/tex]):
[tex]\[ GPE_{\text{initial}} = 2 \, \text{kg} \cdot 9.8 \, \text{m/s}^2 \cdot 0.5 \, \text{m} = 9.8 \, \text{J} \][/tex]
2. Calculate the final gravitational potential energy:
For the final height ([tex]\( h = 1.3 \text{ meters} \)[/tex]):
[tex]\[ GPE_{\text{final}} = 2 \, \text{kg} \cdot 9.8 \, \text{m/s}^2 \cdot 1.3 \, \text{m} = 25.48 \, \text{J} \][/tex]
3. Determine the change in gravitational potential energy:
The change in gravitational potential energy ([tex]\( \Delta GPE \)[/tex]) is the difference between the final and initial GPE:
[tex]\[ \Delta GPE = GPE_{\text{final}} - GPE_{\text{initial}} = 25.48 \, \text{J} - 9.8 \, \text{J} = 15.68 \, \text{J} \][/tex]
Therefore, the amount of gravitational potential energy added to the picture frame when it is lifted to a shelf of height 1.3 meters is:
A. [tex]\( 15.68 \, \text{J} \)[/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.