Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the missing exponent of [tex]\( y \)[/tex] in the polynomial [tex]\( 6xy^2 - 5x^2y^a + 9x^2 \)[/tex] so that it is a trinomial with a degree of 3 after simplification, we need to analyze the terms and their degrees.
1. Let's first break down the polynomial into its individual terms and degrees:
- The first term is [tex]\( 6xy^2 \)[/tex]. The degree of this term is the sum of the exponents of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]: [tex]\( 1 \)[/tex] (for [tex]\( x \)[/tex]) + [tex]\( 2 \)[/tex] (for [tex]\( y \)[/tex]) = 3.
- The second term is [tex]\( -5x^2y^a \)[/tex]. The degree of this term is the sum of the exponents of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]: [tex]\( 2 \)[/tex] (for [tex]\( x \)[/tex]) + [tex]\( a \)[/tex] (for [tex]\( y \)[/tex]).
- The third term is [tex]\( 9x^2 \)[/tex]. The degree of this term is the exponent of [tex]\( x \)[/tex]: [tex]\( 2 \)[/tex].
2. For the polynomial to be a trinomial with a degree of 3, the highest degree term must have a degree of 3. Currently, the first term [tex]\( 6xy^2 \)[/tex] has a degree of 3, and the third term [tex]\( 9x^2 \)[/tex] has a degree of 2, which is lower than 3.
3. To ensure the polynomial has a degree of 3, we need the second term [tex]\( -5x^2y^a \)[/tex] to also have a degree of 3.
4. Set up the equation for the degree of the second term to equal 3:
[tex]\[ 2 + a = 3 \][/tex]
5. Solve for [tex]\( a \)[/tex]:
[tex]\[ a = 3 - 2 \][/tex]
[tex]\[ a = 1 \][/tex]
Therefore, the missing exponent of [tex]\( y \)[/tex] in the second term is [tex]\( 1 \)[/tex].
So, the correct answer is [tex]\( 1 \)[/tex].
1. Let's first break down the polynomial into its individual terms and degrees:
- The first term is [tex]\( 6xy^2 \)[/tex]. The degree of this term is the sum of the exponents of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]: [tex]\( 1 \)[/tex] (for [tex]\( x \)[/tex]) + [tex]\( 2 \)[/tex] (for [tex]\( y \)[/tex]) = 3.
- The second term is [tex]\( -5x^2y^a \)[/tex]. The degree of this term is the sum of the exponents of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]: [tex]\( 2 \)[/tex] (for [tex]\( x \)[/tex]) + [tex]\( a \)[/tex] (for [tex]\( y \)[/tex]).
- The third term is [tex]\( 9x^2 \)[/tex]. The degree of this term is the exponent of [tex]\( x \)[/tex]: [tex]\( 2 \)[/tex].
2. For the polynomial to be a trinomial with a degree of 3, the highest degree term must have a degree of 3. Currently, the first term [tex]\( 6xy^2 \)[/tex] has a degree of 3, and the third term [tex]\( 9x^2 \)[/tex] has a degree of 2, which is lower than 3.
3. To ensure the polynomial has a degree of 3, we need the second term [tex]\( -5x^2y^a \)[/tex] to also have a degree of 3.
4. Set up the equation for the degree of the second term to equal 3:
[tex]\[ 2 + a = 3 \][/tex]
5. Solve for [tex]\( a \)[/tex]:
[tex]\[ a = 3 - 2 \][/tex]
[tex]\[ a = 1 \][/tex]
Therefore, the missing exponent of [tex]\( y \)[/tex] in the second term is [tex]\( 1 \)[/tex].
So, the correct answer is [tex]\( 1 \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.