Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the missing exponent of [tex]\( y \)[/tex] in the polynomial [tex]\( 6xy^2 - 5x^2y^a + 9x^2 \)[/tex] so that it is a trinomial with a degree of 3 after simplification, we need to analyze the terms and their degrees.
1. Let's first break down the polynomial into its individual terms and degrees:
- The first term is [tex]\( 6xy^2 \)[/tex]. The degree of this term is the sum of the exponents of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]: [tex]\( 1 \)[/tex] (for [tex]\( x \)[/tex]) + [tex]\( 2 \)[/tex] (for [tex]\( y \)[/tex]) = 3.
- The second term is [tex]\( -5x^2y^a \)[/tex]. The degree of this term is the sum of the exponents of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]: [tex]\( 2 \)[/tex] (for [tex]\( x \)[/tex]) + [tex]\( a \)[/tex] (for [tex]\( y \)[/tex]).
- The third term is [tex]\( 9x^2 \)[/tex]. The degree of this term is the exponent of [tex]\( x \)[/tex]: [tex]\( 2 \)[/tex].
2. For the polynomial to be a trinomial with a degree of 3, the highest degree term must have a degree of 3. Currently, the first term [tex]\( 6xy^2 \)[/tex] has a degree of 3, and the third term [tex]\( 9x^2 \)[/tex] has a degree of 2, which is lower than 3.
3. To ensure the polynomial has a degree of 3, we need the second term [tex]\( -5x^2y^a \)[/tex] to also have a degree of 3.
4. Set up the equation for the degree of the second term to equal 3:
[tex]\[ 2 + a = 3 \][/tex]
5. Solve for [tex]\( a \)[/tex]:
[tex]\[ a = 3 - 2 \][/tex]
[tex]\[ a = 1 \][/tex]
Therefore, the missing exponent of [tex]\( y \)[/tex] in the second term is [tex]\( 1 \)[/tex].
So, the correct answer is [tex]\( 1 \)[/tex].
1. Let's first break down the polynomial into its individual terms and degrees:
- The first term is [tex]\( 6xy^2 \)[/tex]. The degree of this term is the sum of the exponents of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]: [tex]\( 1 \)[/tex] (for [tex]\( x \)[/tex]) + [tex]\( 2 \)[/tex] (for [tex]\( y \)[/tex]) = 3.
- The second term is [tex]\( -5x^2y^a \)[/tex]. The degree of this term is the sum of the exponents of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]: [tex]\( 2 \)[/tex] (for [tex]\( x \)[/tex]) + [tex]\( a \)[/tex] (for [tex]\( y \)[/tex]).
- The third term is [tex]\( 9x^2 \)[/tex]. The degree of this term is the exponent of [tex]\( x \)[/tex]: [tex]\( 2 \)[/tex].
2. For the polynomial to be a trinomial with a degree of 3, the highest degree term must have a degree of 3. Currently, the first term [tex]\( 6xy^2 \)[/tex] has a degree of 3, and the third term [tex]\( 9x^2 \)[/tex] has a degree of 2, which is lower than 3.
3. To ensure the polynomial has a degree of 3, we need the second term [tex]\( -5x^2y^a \)[/tex] to also have a degree of 3.
4. Set up the equation for the degree of the second term to equal 3:
[tex]\[ 2 + a = 3 \][/tex]
5. Solve for [tex]\( a \)[/tex]:
[tex]\[ a = 3 - 2 \][/tex]
[tex]\[ a = 1 \][/tex]
Therefore, the missing exponent of [tex]\( y \)[/tex] in the second term is [tex]\( 1 \)[/tex].
So, the correct answer is [tex]\( 1 \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.