Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine which ordered pair, if any, needs to be removed for the mapping to represent a function, we must verify the definition of a function. In mathematics, a function is defined as a relationship where each input [tex]\( x \)[/tex] has a unique output [tex]\( y \)[/tex].
1. Let's list the given ordered pairs:
[tex]\[ (-3, -4), (-2, -1), (1, -3), (3, 7) \][/tex]
2. Extract and list the [tex]\( x \)[/tex]-values from these pairs:
[tex]\[ -3, -2, 1, 3 \][/tex]
3. Determine if any [tex]\( x \)[/tex]-values are repeated:
- [tex]\( -3 \)[/tex] appears once.
- [tex]\( -2 \)[/tex] appears once.
- [tex]\( 1 \)[/tex] appears once.
- [tex]\( 3 \)[/tex] appears once.
Since all [tex]\( x \)[/tex]-values are unique, each input is associated with exactly one output. Therefore, no repeated [tex]\( x \)[/tex]-values exist among the ordered pairs. This confirms that the relationship as given already satisfies the definition of a function.
Thus, there is no need to remove any ordered pair. The mapping already represents a function.
So, the conclusion is:
[tex]\[ \boxed{\text{None}} \][/tex]
1. Let's list the given ordered pairs:
[tex]\[ (-3, -4), (-2, -1), (1, -3), (3, 7) \][/tex]
2. Extract and list the [tex]\( x \)[/tex]-values from these pairs:
[tex]\[ -3, -2, 1, 3 \][/tex]
3. Determine if any [tex]\( x \)[/tex]-values are repeated:
- [tex]\( -3 \)[/tex] appears once.
- [tex]\( -2 \)[/tex] appears once.
- [tex]\( 1 \)[/tex] appears once.
- [tex]\( 3 \)[/tex] appears once.
Since all [tex]\( x \)[/tex]-values are unique, each input is associated with exactly one output. Therefore, no repeated [tex]\( x \)[/tex]-values exist among the ordered pairs. This confirms that the relationship as given already satisfies the definition of a function.
Thus, there is no need to remove any ordered pair. The mapping already represents a function.
So, the conclusion is:
[tex]\[ \boxed{\text{None}} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.