Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's analyze the polynomial [tex]\( 3j^4k - 2jk^3 + jk^3 - 2j^4k + jk^3 \)[/tex] and simplify it step by step.
### Combining Like Terms
First, identify and combine like terms in the polynomial. The original polynomial can be broken down into terms involving [tex]\( j^4k \)[/tex] and [tex]\( jk^3 \)[/tex]:
[tex]\[ 3j^4k - 2jk^3 + jk^3 - 2j^4k + jk^3 \][/tex]
1. Combine the [tex]\( j^4k \)[/tex] terms:
[tex]\[ 3j^4k - 2j^4k = j^4k \][/tex]
2. Combine the [tex]\( jk^3 \)[/tex] terms:
[tex]\[ -2jk^3 + jk^3 + jk^3 = 0jk^3 = 0 \][/tex]
After combining the like terms, the polynomial simplifies to:
[tex]\[ j^4k \][/tex]
### Degree of the Polynomial
The degree of a polynomial is the highest sum of the exponents in any single term. For the term [tex]\( j^4k \)[/tex]:
[tex]\[ \text{Degree} = 4 (from \, j^4) + 1 (from \, k) = 5 \][/tex]
### Number of Terms
After simplification, there is only one term in the polynomial:
[tex]\[ j^4k \][/tex]
### Conclusion
The simplified polynomial [tex]\( j^4k \)[/tex] has:
- 1 term
- A degree of 5
Thus, the correct statement is:
It has 1 term and a degree of 5.
### Combining Like Terms
First, identify and combine like terms in the polynomial. The original polynomial can be broken down into terms involving [tex]\( j^4k \)[/tex] and [tex]\( jk^3 \)[/tex]:
[tex]\[ 3j^4k - 2jk^3 + jk^3 - 2j^4k + jk^3 \][/tex]
1. Combine the [tex]\( j^4k \)[/tex] terms:
[tex]\[ 3j^4k - 2j^4k = j^4k \][/tex]
2. Combine the [tex]\( jk^3 \)[/tex] terms:
[tex]\[ -2jk^3 + jk^3 + jk^3 = 0jk^3 = 0 \][/tex]
After combining the like terms, the polynomial simplifies to:
[tex]\[ j^4k \][/tex]
### Degree of the Polynomial
The degree of a polynomial is the highest sum of the exponents in any single term. For the term [tex]\( j^4k \)[/tex]:
[tex]\[ \text{Degree} = 4 (from \, j^4) + 1 (from \, k) = 5 \][/tex]
### Number of Terms
After simplification, there is only one term in the polynomial:
[tex]\[ j^4k \][/tex]
### Conclusion
The simplified polynomial [tex]\( j^4k \)[/tex] has:
- 1 term
- A degree of 5
Thus, the correct statement is:
It has 1 term and a degree of 5.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.