Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which graph represents the function [tex]\( f(x) = 2^{x-1} + 2 \)[/tex], we need to analyze its characteristics and behavior.
### Step 1: Understanding the Function
The function [tex]\( f(x) = 2^{x-1} + 2 \)[/tex] can be broken down into parts:
- Base Function: [tex]\( 2^{x} \)[/tex] is the standard exponential function with base 2.
- Shifting: [tex]\( 2^{x-1} \)[/tex] indicates a horizontal shift by 1 unit to the right because of the [tex]\( x-1 \)[/tex] term.
- Vertical Shift: Adding 2 to the result means the entire graph is shifted up by 2 units.
### Step 2: Determining Key Points
Let's determine some key points on the graph:
- When [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 2^{0-1} + 2 = 2^{-1} + 2 = \frac{1}{2} + 2 = 2.5 \][/tex]
- When [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 2^{1-1} + 2 = 2^{0} + 2 = 1 + 2 = 3 \][/tex]
- When [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 2^{2-1} + 2 = 2^{1} + 2 = 2 + 2 = 4 \][/tex]
### Step 3: Behavior of the Function
- Asymptote: The function [tex]\( f(x) \)[/tex] will approach [tex]\( y = 2 \)[/tex] as [tex]\( x \)[/tex] approaches negative infinity, due to the horizontal and vertical shift.
- Growth: Since the base of the exponential part is 2, the function will grow exponentially as [tex]\( x \)[/tex] increases.
### Step 4: Plotting Points and Analyzing Graph
Now that we have key points and understand the behavior:
- At [tex]\( x = 0 \)[/tex], [tex]\( y \)[/tex] is approximately 2.5.
- At [tex]\( x = 1 \)[/tex], [tex]\( y \)[/tex] is 3.
- At [tex]\( x = 2 \)[/tex], [tex]\( y \)[/tex] is 4.
- There is a horizontal asymptote at [tex]\( y = 2 \)[/tex].
### Conclusion
Based on the key points and the asymptotic behavior, we need to select the graph that:
- Grows exponentially.
- Has a horizontal asymptote at [tex]\( y = 2 \)[/tex].
- Shows the specified key points.
Observing the graphs provided (A or B) and identifying the one that fits this precise behavior will help us choose the correct representation of the function [tex]\( f(x) = 2^{x-1} + 2 \)[/tex].
If you describe the graphs and their behavior, I can help you determine which one accurately represents the function.
### Step 1: Understanding the Function
The function [tex]\( f(x) = 2^{x-1} + 2 \)[/tex] can be broken down into parts:
- Base Function: [tex]\( 2^{x} \)[/tex] is the standard exponential function with base 2.
- Shifting: [tex]\( 2^{x-1} \)[/tex] indicates a horizontal shift by 1 unit to the right because of the [tex]\( x-1 \)[/tex] term.
- Vertical Shift: Adding 2 to the result means the entire graph is shifted up by 2 units.
### Step 2: Determining Key Points
Let's determine some key points on the graph:
- When [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 2^{0-1} + 2 = 2^{-1} + 2 = \frac{1}{2} + 2 = 2.5 \][/tex]
- When [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 2^{1-1} + 2 = 2^{0} + 2 = 1 + 2 = 3 \][/tex]
- When [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 2^{2-1} + 2 = 2^{1} + 2 = 2 + 2 = 4 \][/tex]
### Step 3: Behavior of the Function
- Asymptote: The function [tex]\( f(x) \)[/tex] will approach [tex]\( y = 2 \)[/tex] as [tex]\( x \)[/tex] approaches negative infinity, due to the horizontal and vertical shift.
- Growth: Since the base of the exponential part is 2, the function will grow exponentially as [tex]\( x \)[/tex] increases.
### Step 4: Plotting Points and Analyzing Graph
Now that we have key points and understand the behavior:
- At [tex]\( x = 0 \)[/tex], [tex]\( y \)[/tex] is approximately 2.5.
- At [tex]\( x = 1 \)[/tex], [tex]\( y \)[/tex] is 3.
- At [tex]\( x = 2 \)[/tex], [tex]\( y \)[/tex] is 4.
- There is a horizontal asymptote at [tex]\( y = 2 \)[/tex].
### Conclusion
Based on the key points and the asymptotic behavior, we need to select the graph that:
- Grows exponentially.
- Has a horizontal asymptote at [tex]\( y = 2 \)[/tex].
- Shows the specified key points.
Observing the graphs provided (A or B) and identifying the one that fits this precise behavior will help us choose the correct representation of the function [tex]\( f(x) = 2^{x-1} + 2 \)[/tex].
If you describe the graphs and their behavior, I can help you determine which one accurately represents the function.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.