Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve this problem, we need to address each inequality individually and then combine their solutions. Here are the steps:
### Step 1: Solve the first inequality [tex]\(4x + 2 > 14\)[/tex]
1. Subtract 2 from both sides of the inequality:
[tex]\[ 4x + 2 - 2 > 14 - 2 \][/tex]
Simplifies to:
[tex]\[ 4x > 12 \][/tex]
2. Divide both sides by 4:
[tex]\[ \frac{4x}{4} > \frac{12}{4} \][/tex]
Simplifies to:
[tex]\[ x > 3 \][/tex]
### Step 2: Solve the second inequality [tex]\(-21x + 1 > 22\)[/tex]
1. Subtract 1 from both sides of the inequality:
[tex]\[ -21x + 1 - 1 > 22 - 1 \][/tex]
Simplifies to:
[tex]\[ -21x > 21 \][/tex]
2. Divide both sides by -21. Note that dividing by a negative number reverses the inequality sign:
[tex]\[ \frac{-21x}{-21} < \frac{21}{-21} \][/tex]
Simplifies to:
[tex]\[ x < -1 \][/tex]
### Combining the solutions:
- From the first inequality, we have [tex]\(x > 3\)[/tex].
- From the second inequality, we have [tex]\(x < -1\)[/tex].
Thus, we need [tex]\(x\)[/tex] to be both greater than 3 and less than -1 simultaneously.
### Conclusion:
There are no real numbers [tex]\(x\)[/tex] that satisfy both inequalities at the same time. Therefore, the solution set is the empty set.
[tex]\[ \boxed{\text{No real numbers } x \text{ satisfy both inequalities}} \][/tex]
### Step 1: Solve the first inequality [tex]\(4x + 2 > 14\)[/tex]
1. Subtract 2 from both sides of the inequality:
[tex]\[ 4x + 2 - 2 > 14 - 2 \][/tex]
Simplifies to:
[tex]\[ 4x > 12 \][/tex]
2. Divide both sides by 4:
[tex]\[ \frac{4x}{4} > \frac{12}{4} \][/tex]
Simplifies to:
[tex]\[ x > 3 \][/tex]
### Step 2: Solve the second inequality [tex]\(-21x + 1 > 22\)[/tex]
1. Subtract 1 from both sides of the inequality:
[tex]\[ -21x + 1 - 1 > 22 - 1 \][/tex]
Simplifies to:
[tex]\[ -21x > 21 \][/tex]
2. Divide both sides by -21. Note that dividing by a negative number reverses the inequality sign:
[tex]\[ \frac{-21x}{-21} < \frac{21}{-21} \][/tex]
Simplifies to:
[tex]\[ x < -1 \][/tex]
### Combining the solutions:
- From the first inequality, we have [tex]\(x > 3\)[/tex].
- From the second inequality, we have [tex]\(x < -1\)[/tex].
Thus, we need [tex]\(x\)[/tex] to be both greater than 3 and less than -1 simultaneously.
### Conclusion:
There are no real numbers [tex]\(x\)[/tex] that satisfy both inequalities at the same time. Therefore, the solution set is the empty set.
[tex]\[ \boxed{\text{No real numbers } x \text{ satisfy both inequalities}} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.