Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve this problem, we need to address each inequality individually and then combine their solutions. Here are the steps:
### Step 1: Solve the first inequality [tex]\(4x + 2 > 14\)[/tex]
1. Subtract 2 from both sides of the inequality:
[tex]\[ 4x + 2 - 2 > 14 - 2 \][/tex]
Simplifies to:
[tex]\[ 4x > 12 \][/tex]
2. Divide both sides by 4:
[tex]\[ \frac{4x}{4} > \frac{12}{4} \][/tex]
Simplifies to:
[tex]\[ x > 3 \][/tex]
### Step 2: Solve the second inequality [tex]\(-21x + 1 > 22\)[/tex]
1. Subtract 1 from both sides of the inequality:
[tex]\[ -21x + 1 - 1 > 22 - 1 \][/tex]
Simplifies to:
[tex]\[ -21x > 21 \][/tex]
2. Divide both sides by -21. Note that dividing by a negative number reverses the inequality sign:
[tex]\[ \frac{-21x}{-21} < \frac{21}{-21} \][/tex]
Simplifies to:
[tex]\[ x < -1 \][/tex]
### Combining the solutions:
- From the first inequality, we have [tex]\(x > 3\)[/tex].
- From the second inequality, we have [tex]\(x < -1\)[/tex].
Thus, we need [tex]\(x\)[/tex] to be both greater than 3 and less than -1 simultaneously.
### Conclusion:
There are no real numbers [tex]\(x\)[/tex] that satisfy both inequalities at the same time. Therefore, the solution set is the empty set.
[tex]\[ \boxed{\text{No real numbers } x \text{ satisfy both inequalities}} \][/tex]
### Step 1: Solve the first inequality [tex]\(4x + 2 > 14\)[/tex]
1. Subtract 2 from both sides of the inequality:
[tex]\[ 4x + 2 - 2 > 14 - 2 \][/tex]
Simplifies to:
[tex]\[ 4x > 12 \][/tex]
2. Divide both sides by 4:
[tex]\[ \frac{4x}{4} > \frac{12}{4} \][/tex]
Simplifies to:
[tex]\[ x > 3 \][/tex]
### Step 2: Solve the second inequality [tex]\(-21x + 1 > 22\)[/tex]
1. Subtract 1 from both sides of the inequality:
[tex]\[ -21x + 1 - 1 > 22 - 1 \][/tex]
Simplifies to:
[tex]\[ -21x > 21 \][/tex]
2. Divide both sides by -21. Note that dividing by a negative number reverses the inequality sign:
[tex]\[ \frac{-21x}{-21} < \frac{21}{-21} \][/tex]
Simplifies to:
[tex]\[ x < -1 \][/tex]
### Combining the solutions:
- From the first inequality, we have [tex]\(x > 3\)[/tex].
- From the second inequality, we have [tex]\(x < -1\)[/tex].
Thus, we need [tex]\(x\)[/tex] to be both greater than 3 and less than -1 simultaneously.
### Conclusion:
There are no real numbers [tex]\(x\)[/tex] that satisfy both inequalities at the same time. Therefore, the solution set is the empty set.
[tex]\[ \boxed{\text{No real numbers } x \text{ satisfy both inequalities}} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.