At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve this problem, we need to address each inequality individually and then combine their solutions. Here are the steps:
### Step 1: Solve the first inequality [tex]\(4x + 2 > 14\)[/tex]
1. Subtract 2 from both sides of the inequality:
[tex]\[ 4x + 2 - 2 > 14 - 2 \][/tex]
Simplifies to:
[tex]\[ 4x > 12 \][/tex]
2. Divide both sides by 4:
[tex]\[ \frac{4x}{4} > \frac{12}{4} \][/tex]
Simplifies to:
[tex]\[ x > 3 \][/tex]
### Step 2: Solve the second inequality [tex]\(-21x + 1 > 22\)[/tex]
1. Subtract 1 from both sides of the inequality:
[tex]\[ -21x + 1 - 1 > 22 - 1 \][/tex]
Simplifies to:
[tex]\[ -21x > 21 \][/tex]
2. Divide both sides by -21. Note that dividing by a negative number reverses the inequality sign:
[tex]\[ \frac{-21x}{-21} < \frac{21}{-21} \][/tex]
Simplifies to:
[tex]\[ x < -1 \][/tex]
### Combining the solutions:
- From the first inequality, we have [tex]\(x > 3\)[/tex].
- From the second inequality, we have [tex]\(x < -1\)[/tex].
Thus, we need [tex]\(x\)[/tex] to be both greater than 3 and less than -1 simultaneously.
### Conclusion:
There are no real numbers [tex]\(x\)[/tex] that satisfy both inequalities at the same time. Therefore, the solution set is the empty set.
[tex]\[ \boxed{\text{No real numbers } x \text{ satisfy both inequalities}} \][/tex]
### Step 1: Solve the first inequality [tex]\(4x + 2 > 14\)[/tex]
1. Subtract 2 from both sides of the inequality:
[tex]\[ 4x + 2 - 2 > 14 - 2 \][/tex]
Simplifies to:
[tex]\[ 4x > 12 \][/tex]
2. Divide both sides by 4:
[tex]\[ \frac{4x}{4} > \frac{12}{4} \][/tex]
Simplifies to:
[tex]\[ x > 3 \][/tex]
### Step 2: Solve the second inequality [tex]\(-21x + 1 > 22\)[/tex]
1. Subtract 1 from both sides of the inequality:
[tex]\[ -21x + 1 - 1 > 22 - 1 \][/tex]
Simplifies to:
[tex]\[ -21x > 21 \][/tex]
2. Divide both sides by -21. Note that dividing by a negative number reverses the inequality sign:
[tex]\[ \frac{-21x}{-21} < \frac{21}{-21} \][/tex]
Simplifies to:
[tex]\[ x < -1 \][/tex]
### Combining the solutions:
- From the first inequality, we have [tex]\(x > 3\)[/tex].
- From the second inequality, we have [tex]\(x < -1\)[/tex].
Thus, we need [tex]\(x\)[/tex] to be both greater than 3 and less than -1 simultaneously.
### Conclusion:
There are no real numbers [tex]\(x\)[/tex] that satisfy both inequalities at the same time. Therefore, the solution set is the empty set.
[tex]\[ \boxed{\text{No real numbers } x \text{ satisfy both inequalities}} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.