Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find all real numbers [tex]\( x \)[/tex] such that [tex]\( 6x - 21 \leq -3 \)[/tex] or [tex]\( 14x + 11 \leq -17 \)[/tex], we will solve each inequality separately and then combine the results.
1. Solve the first inequality: [tex]\( 6x - 21 \leq -3 \)[/tex]
- Add 21 to both sides:
[tex]\[ 6x - 21 + 21 \leq -3 + 21 \][/tex]
[tex]\[ 6x \leq 18 \][/tex]
- Divide both sides by 6:
[tex]\[ x \leq 3 \][/tex]
2. Solve the second inequality: [tex]\( 14x + 11 \leq -17 \)[/tex]
- Subtract 11 from both sides:
[tex]\[ 14x + 11 - 11 \leq -17 - 11 \][/tex]
[tex]\[ 14x \leq -28 \][/tex]
- Divide both sides by 14:
[tex]\[ x \leq -2 \][/tex]
3. Combine the solutions:
For [tex]\( x \)[/tex] to satisfy the original statement [tex]\( 6x - 21 \leq -3 \)[/tex] or [tex]\( 14x + 11 \leq -17 \)[/tex], it must satisfy either of the individual inequalities.
- From the first inequality, we have [tex]\( x \leq 3 \)[/tex].
- From the second inequality, we have [tex]\( x \leq -2 \)[/tex].
Since any number that satisfies [tex]\( x \leq -2 \)[/tex] also satisfies [tex]\( x \leq 3 \)[/tex], the more restrictive condition [tex]\( x \leq -2 \)[/tex] is sufficient to describe the complete solution.
Therefore, the combined solution for the inequalities is:
[tex]\[ x \leq 3 \][/tex]
In conclusion, the correct answer is all real numbers [tex]\( x \)[/tex] such that:
[tex]\[ x \leq 3 \][/tex]
1. Solve the first inequality: [tex]\( 6x - 21 \leq -3 \)[/tex]
- Add 21 to both sides:
[tex]\[ 6x - 21 + 21 \leq -3 + 21 \][/tex]
[tex]\[ 6x \leq 18 \][/tex]
- Divide both sides by 6:
[tex]\[ x \leq 3 \][/tex]
2. Solve the second inequality: [tex]\( 14x + 11 \leq -17 \)[/tex]
- Subtract 11 from both sides:
[tex]\[ 14x + 11 - 11 \leq -17 - 11 \][/tex]
[tex]\[ 14x \leq -28 \][/tex]
- Divide both sides by 14:
[tex]\[ x \leq -2 \][/tex]
3. Combine the solutions:
For [tex]\( x \)[/tex] to satisfy the original statement [tex]\( 6x - 21 \leq -3 \)[/tex] or [tex]\( 14x + 11 \leq -17 \)[/tex], it must satisfy either of the individual inequalities.
- From the first inequality, we have [tex]\( x \leq 3 \)[/tex].
- From the second inequality, we have [tex]\( x \leq -2 \)[/tex].
Since any number that satisfies [tex]\( x \leq -2 \)[/tex] also satisfies [tex]\( x \leq 3 \)[/tex], the more restrictive condition [tex]\( x \leq -2 \)[/tex] is sufficient to describe the complete solution.
Therefore, the combined solution for the inequalities is:
[tex]\[ x \leq 3 \][/tex]
In conclusion, the correct answer is all real numbers [tex]\( x \)[/tex] such that:
[tex]\[ x \leq 3 \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.