Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the resulting function after applying the given sequence of transformations to [tex]\( f(x) = x^5 \)[/tex], let's follow each transformation step-by-step:
1. Vertical Compression by [tex]\(\frac{1}{2}\)[/tex]:
When we compress a function vertically by a factor of [tex]\(\frac{1}{2}\)[/tex], we multiply the entire function by [tex]\(\frac{1}{2}\)[/tex]:
[tex]\[ f(x) = x^5 \implies \frac{1}{2} \cdot x^5 \][/tex]
Therefore, after this transformation, our modified function is:
[tex]\[ g(x) = \frac{1}{2} x^5 \][/tex]
2. Horizontal Shift Left by 2 Units:
To shift the function horizontally to the left by 2 units, we replace [tex]\( x \)[/tex] with [tex]\( x + 2 \)[/tex] in the function:
[tex]\[ g(x) = \frac{1}{2}(x + 2)^5 \][/tex]
3. Vertical Shift Down by 1 Unit:
To shift the function vertically down by 1 unit, we subtract 1 from the function:
[tex]\[ g(x) = \frac{1}{2}(x + 2)^5 - 1 \][/tex]
Combining all these transformations, we get the resulting function after applying the sequence of transformations to [tex]\( f(x) = x^5 \)[/tex]:
[tex]\[ g(x) = \frac{1}{2}(x + 2)^5 - 1 \][/tex]
Thus, the correct answer is:
B. [tex]\( g(x) = \frac{1}{2}(x + 2)^5 - 1 \)[/tex]
1. Vertical Compression by [tex]\(\frac{1}{2}\)[/tex]:
When we compress a function vertically by a factor of [tex]\(\frac{1}{2}\)[/tex], we multiply the entire function by [tex]\(\frac{1}{2}\)[/tex]:
[tex]\[ f(x) = x^5 \implies \frac{1}{2} \cdot x^5 \][/tex]
Therefore, after this transformation, our modified function is:
[tex]\[ g(x) = \frac{1}{2} x^5 \][/tex]
2. Horizontal Shift Left by 2 Units:
To shift the function horizontally to the left by 2 units, we replace [tex]\( x \)[/tex] with [tex]\( x + 2 \)[/tex] in the function:
[tex]\[ g(x) = \frac{1}{2}(x + 2)^5 \][/tex]
3. Vertical Shift Down by 1 Unit:
To shift the function vertically down by 1 unit, we subtract 1 from the function:
[tex]\[ g(x) = \frac{1}{2}(x + 2)^5 - 1 \][/tex]
Combining all these transformations, we get the resulting function after applying the sequence of transformations to [tex]\( f(x) = x^5 \)[/tex]:
[tex]\[ g(x) = \frac{1}{2}(x + 2)^5 - 1 \][/tex]
Thus, the correct answer is:
B. [tex]\( g(x) = \frac{1}{2}(x + 2)^5 - 1 \)[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.