Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the resulting function after applying the given sequence of transformations to [tex]\( f(x) = x^5 \)[/tex], let's follow each transformation step-by-step:
1. Vertical Compression by [tex]\(\frac{1}{2}\)[/tex]:
When we compress a function vertically by a factor of [tex]\(\frac{1}{2}\)[/tex], we multiply the entire function by [tex]\(\frac{1}{2}\)[/tex]:
[tex]\[ f(x) = x^5 \implies \frac{1}{2} \cdot x^5 \][/tex]
Therefore, after this transformation, our modified function is:
[tex]\[ g(x) = \frac{1}{2} x^5 \][/tex]
2. Horizontal Shift Left by 2 Units:
To shift the function horizontally to the left by 2 units, we replace [tex]\( x \)[/tex] with [tex]\( x + 2 \)[/tex] in the function:
[tex]\[ g(x) = \frac{1}{2}(x + 2)^5 \][/tex]
3. Vertical Shift Down by 1 Unit:
To shift the function vertically down by 1 unit, we subtract 1 from the function:
[tex]\[ g(x) = \frac{1}{2}(x + 2)^5 - 1 \][/tex]
Combining all these transformations, we get the resulting function after applying the sequence of transformations to [tex]\( f(x) = x^5 \)[/tex]:
[tex]\[ g(x) = \frac{1}{2}(x + 2)^5 - 1 \][/tex]
Thus, the correct answer is:
B. [tex]\( g(x) = \frac{1}{2}(x + 2)^5 - 1 \)[/tex]
1. Vertical Compression by [tex]\(\frac{1}{2}\)[/tex]:
When we compress a function vertically by a factor of [tex]\(\frac{1}{2}\)[/tex], we multiply the entire function by [tex]\(\frac{1}{2}\)[/tex]:
[tex]\[ f(x) = x^5 \implies \frac{1}{2} \cdot x^5 \][/tex]
Therefore, after this transformation, our modified function is:
[tex]\[ g(x) = \frac{1}{2} x^5 \][/tex]
2. Horizontal Shift Left by 2 Units:
To shift the function horizontally to the left by 2 units, we replace [tex]\( x \)[/tex] with [tex]\( x + 2 \)[/tex] in the function:
[tex]\[ g(x) = \frac{1}{2}(x + 2)^5 \][/tex]
3. Vertical Shift Down by 1 Unit:
To shift the function vertically down by 1 unit, we subtract 1 from the function:
[tex]\[ g(x) = \frac{1}{2}(x + 2)^5 - 1 \][/tex]
Combining all these transformations, we get the resulting function after applying the sequence of transformations to [tex]\( f(x) = x^5 \)[/tex]:
[tex]\[ g(x) = \frac{1}{2}(x + 2)^5 - 1 \][/tex]
Thus, the correct answer is:
B. [tex]\( g(x) = \frac{1}{2}(x + 2)^5 - 1 \)[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.