Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To analyze the given statements based on the equation [tex]\( a^{1 / n} = r \)[/tex], let's go through each one step-by-step:
### Statement A: [tex]\( \sqrt[n]{a} = r \)[/tex]
This statement asserts that the [tex]\( n \)[/tex]-th root of [tex]\( a \)[/tex] is equal to [tex]\( r \)[/tex].
- By definition, the [tex]\( n \)[/tex]-th root of [tex]\( a \)[/tex] can be written as [tex]\( \sqrt[n]{a} \)[/tex], which is equivalent to [tex]\( a^{1/n} \)[/tex].
- Since we are given that [tex]\( a^{1 / n} = r \)[/tex], this statement [tex]\( \sqrt[n]{a} = r \)[/tex] is indeed true.
### Statement B: [tex]\( r^n = a \)[/tex]
This statement claims that raising [tex]\( r \)[/tex] to the power of [tex]\( n \)[/tex] gives [tex]\( a \)[/tex].
- Given [tex]\( a^{1 / n} = r \)[/tex], we can raise both sides of this equation to the [tex]\( n \)[/tex]-th power to check the validity.
- [tex]\((a^{1/n})^n = r^n\)[/tex]
- Simplifying the left side, [tex]\( a = r^n \)[/tex].
Since [tex]\( r^n = a \)[/tex], this statement is true.
### Statement C: [tex]\( n^{1 / r} = a \)[/tex]
This statement asserts a relationship between [tex]\( n \)[/tex] and [tex]\( r \)[/tex] in which [tex]\( n \)[/tex] raised to the power of [tex]\( 1 / r \)[/tex] equals [tex]\( a \)[/tex].
- There is no direct mathematical property or transformation that relates [tex]\( a^{1/n} = r \)[/tex] to [tex]\( n^{1 / r} = a \)[/tex].
- The relationship given by [tex]\( a^{1 / n} = r \)[/tex] does not imply that [tex]\( n^{1 / r} = a \)[/tex].
Therefore, this statement is false.
### Statement D: [tex]\( d^{\prime} = n \)[/tex]
This statement introduces [tex]\( d' \)[/tex], which is not defined in the given context.
- Since [tex]\( d' \)[/tex] is not specified or related to the equation [tex]\( a^{1 / n} = r \)[/tex], we cannot establish any meaningful relationship between [tex]\( d' \)[/tex] and [tex]\( n \)[/tex].
Thus, this statement is also false.
### Conclusion
Based on the detailed analysis:
- Statement A is true.
- Statement B is true.
- Statement C is false.
- Statement D is false.
So, the correct responses are:
[tex]\[ \boxed{[1, 1, 0, 0]} \][/tex]
### Statement A: [tex]\( \sqrt[n]{a} = r \)[/tex]
This statement asserts that the [tex]\( n \)[/tex]-th root of [tex]\( a \)[/tex] is equal to [tex]\( r \)[/tex].
- By definition, the [tex]\( n \)[/tex]-th root of [tex]\( a \)[/tex] can be written as [tex]\( \sqrt[n]{a} \)[/tex], which is equivalent to [tex]\( a^{1/n} \)[/tex].
- Since we are given that [tex]\( a^{1 / n} = r \)[/tex], this statement [tex]\( \sqrt[n]{a} = r \)[/tex] is indeed true.
### Statement B: [tex]\( r^n = a \)[/tex]
This statement claims that raising [tex]\( r \)[/tex] to the power of [tex]\( n \)[/tex] gives [tex]\( a \)[/tex].
- Given [tex]\( a^{1 / n} = r \)[/tex], we can raise both sides of this equation to the [tex]\( n \)[/tex]-th power to check the validity.
- [tex]\((a^{1/n})^n = r^n\)[/tex]
- Simplifying the left side, [tex]\( a = r^n \)[/tex].
Since [tex]\( r^n = a \)[/tex], this statement is true.
### Statement C: [tex]\( n^{1 / r} = a \)[/tex]
This statement asserts a relationship between [tex]\( n \)[/tex] and [tex]\( r \)[/tex] in which [tex]\( n \)[/tex] raised to the power of [tex]\( 1 / r \)[/tex] equals [tex]\( a \)[/tex].
- There is no direct mathematical property or transformation that relates [tex]\( a^{1/n} = r \)[/tex] to [tex]\( n^{1 / r} = a \)[/tex].
- The relationship given by [tex]\( a^{1 / n} = r \)[/tex] does not imply that [tex]\( n^{1 / r} = a \)[/tex].
Therefore, this statement is false.
### Statement D: [tex]\( d^{\prime} = n \)[/tex]
This statement introduces [tex]\( d' \)[/tex], which is not defined in the given context.
- Since [tex]\( d' \)[/tex] is not specified or related to the equation [tex]\( a^{1 / n} = r \)[/tex], we cannot establish any meaningful relationship between [tex]\( d' \)[/tex] and [tex]\( n \)[/tex].
Thus, this statement is also false.
### Conclusion
Based on the detailed analysis:
- Statement A is true.
- Statement B is true.
- Statement C is false.
- Statement D is false.
So, the correct responses are:
[tex]\[ \boxed{[1, 1, 0, 0]} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.