Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure! Let's solve this problem step-by-step.
### Step 1: Identify the slope [tex]\( m \)[/tex]
The slope [tex]\( m \)[/tex] of the line passing through two points [tex]\( (x_1, y_1) \)[/tex] and [tex]\( (x_2, y_2) \)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Given points are [tex]\( M(-3, 5) \)[/tex] and [tex]\( N(2, 0) \)[/tex].
Plugging in these values:
[tex]\[ m = \frac{0 - 5}{2 - (-3)} = \frac{-5}{2 + 3} = \frac{-5}{5} = -1 \][/tex]
So, the slope [tex]\( m = -1 \)[/tex].
### Step 2: Write the equation in point-slope form
The point-slope form of the equation of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Using point [tex]\( M(-3, 5) \)[/tex] and slope [tex]\( m = -1 \)[/tex]:
[tex]\[ y - 5 = -1(x - (-3)) \][/tex]
Simplify the right-hand side:
[tex]\[ y - 5 = -1(x + 3) \][/tex]
### Step 3: Simplify the equation and isolate the y variable
Let's distribute [tex]\(-1\)[/tex] on the right-hand side:
[tex]\[ y - 5 = -x - 3 \][/tex]
Now isolate the [tex]\( y \)[/tex] variable:
[tex]\[ y = -x - 3 + 5 \][/tex]
[tex]\[ y = -x + 2 \][/tex]
So the equation of the line [tex]\( MN \)[/tex] is:
[tex]\[ y = -x + 2 \][/tex]
To summarize:
- The slope [tex]\( m = -1 \)[/tex]
- The equation of the line in slope-intercept form is [tex]\( y = -x + 2 \)[/tex]
### Step 1: Identify the slope [tex]\( m \)[/tex]
The slope [tex]\( m \)[/tex] of the line passing through two points [tex]\( (x_1, y_1) \)[/tex] and [tex]\( (x_2, y_2) \)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Given points are [tex]\( M(-3, 5) \)[/tex] and [tex]\( N(2, 0) \)[/tex].
Plugging in these values:
[tex]\[ m = \frac{0 - 5}{2 - (-3)} = \frac{-5}{2 + 3} = \frac{-5}{5} = -1 \][/tex]
So, the slope [tex]\( m = -1 \)[/tex].
### Step 2: Write the equation in point-slope form
The point-slope form of the equation of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Using point [tex]\( M(-3, 5) \)[/tex] and slope [tex]\( m = -1 \)[/tex]:
[tex]\[ y - 5 = -1(x - (-3)) \][/tex]
Simplify the right-hand side:
[tex]\[ y - 5 = -1(x + 3) \][/tex]
### Step 3: Simplify the equation and isolate the y variable
Let's distribute [tex]\(-1\)[/tex] on the right-hand side:
[tex]\[ y - 5 = -x - 3 \][/tex]
Now isolate the [tex]\( y \)[/tex] variable:
[tex]\[ y = -x - 3 + 5 \][/tex]
[tex]\[ y = -x + 2 \][/tex]
So the equation of the line [tex]\( MN \)[/tex] is:
[tex]\[ y = -x + 2 \][/tex]
To summarize:
- The slope [tex]\( m = -1 \)[/tex]
- The equation of the line in slope-intercept form is [tex]\( y = -x + 2 \)[/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.