Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure! Let's solve this problem step-by-step.
### Step 1: Identify the slope [tex]\( m \)[/tex]
The slope [tex]\( m \)[/tex] of the line passing through two points [tex]\( (x_1, y_1) \)[/tex] and [tex]\( (x_2, y_2) \)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Given points are [tex]\( M(-3, 5) \)[/tex] and [tex]\( N(2, 0) \)[/tex].
Plugging in these values:
[tex]\[ m = \frac{0 - 5}{2 - (-3)} = \frac{-5}{2 + 3} = \frac{-5}{5} = -1 \][/tex]
So, the slope [tex]\( m = -1 \)[/tex].
### Step 2: Write the equation in point-slope form
The point-slope form of the equation of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Using point [tex]\( M(-3, 5) \)[/tex] and slope [tex]\( m = -1 \)[/tex]:
[tex]\[ y - 5 = -1(x - (-3)) \][/tex]
Simplify the right-hand side:
[tex]\[ y - 5 = -1(x + 3) \][/tex]
### Step 3: Simplify the equation and isolate the y variable
Let's distribute [tex]\(-1\)[/tex] on the right-hand side:
[tex]\[ y - 5 = -x - 3 \][/tex]
Now isolate the [tex]\( y \)[/tex] variable:
[tex]\[ y = -x - 3 + 5 \][/tex]
[tex]\[ y = -x + 2 \][/tex]
So the equation of the line [tex]\( MN \)[/tex] is:
[tex]\[ y = -x + 2 \][/tex]
To summarize:
- The slope [tex]\( m = -1 \)[/tex]
- The equation of the line in slope-intercept form is [tex]\( y = -x + 2 \)[/tex]
### Step 1: Identify the slope [tex]\( m \)[/tex]
The slope [tex]\( m \)[/tex] of the line passing through two points [tex]\( (x_1, y_1) \)[/tex] and [tex]\( (x_2, y_2) \)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Given points are [tex]\( M(-3, 5) \)[/tex] and [tex]\( N(2, 0) \)[/tex].
Plugging in these values:
[tex]\[ m = \frac{0 - 5}{2 - (-3)} = \frac{-5}{2 + 3} = \frac{-5}{5} = -1 \][/tex]
So, the slope [tex]\( m = -1 \)[/tex].
### Step 2: Write the equation in point-slope form
The point-slope form of the equation of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Using point [tex]\( M(-3, 5) \)[/tex] and slope [tex]\( m = -1 \)[/tex]:
[tex]\[ y - 5 = -1(x - (-3)) \][/tex]
Simplify the right-hand side:
[tex]\[ y - 5 = -1(x + 3) \][/tex]
### Step 3: Simplify the equation and isolate the y variable
Let's distribute [tex]\(-1\)[/tex] on the right-hand side:
[tex]\[ y - 5 = -x - 3 \][/tex]
Now isolate the [tex]\( y \)[/tex] variable:
[tex]\[ y = -x - 3 + 5 \][/tex]
[tex]\[ y = -x + 2 \][/tex]
So the equation of the line [tex]\( MN \)[/tex] is:
[tex]\[ y = -x + 2 \][/tex]
To summarize:
- The slope [tex]\( m = -1 \)[/tex]
- The equation of the line in slope-intercept form is [tex]\( y = -x + 2 \)[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.