Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's solve the inequality step by step and find the solution set.
Given inequality:
[tex]\[ 5x + 38 \leq 4(2 - 5x) \][/tex]
First, distribute the 4 on the right side:
[tex]\[ 5x + 38 \leq 8 - 20x \][/tex]
Next, let's move all terms involving [tex]\(x\)[/tex] to one side and constant terms to the other side. We can start by adding [tex]\(20x\)[/tex] to both sides:
[tex]\[ 5x + 20x + 38 \leq 8 \][/tex]
[tex]\[ 25x + 38 \leq 8 \][/tex]
Subtract 38 from both sides to isolate the [tex]\(x\)[/tex] term:
[tex]\[ 25x \leq 8 - 38 \][/tex]
[tex]\[ 25x \leq -30 \][/tex]
Finally, divide both sides by 25 to solve for [tex]\(x\)[/tex]:
[tex]\[ x \leq \frac{-30}{25} \][/tex]
[tex]\[ x \leq -\frac{6}{5} \][/tex]
[tex]\[ x \leq -1.2 \][/tex]
The solution set for the inequality is:
[tex]\[ x \leq -1.2 \][/tex]
To determine the correct graph representing this solution set, we look for the graph where:
1. The line is at [tex]\( x = -1.2 \)[/tex].
2. The shaded region includes all values less than or equal to [tex]\(-1.2\)[/tex].
Without the graphs provided, one would look for the graph that meets these conditions. The correct graph should have a solid line at [tex]\( x = -1.2 \)[/tex] (indicating [tex]\(\leq\)[/tex]) and shading to the left of the line.
Therefore, based on this analysis, the best graph is the one that represents [tex]\( x \leq -1.2 \)[/tex]. Please select the graph (A, B, C, or D) that appropriately indicates this solution set.
Given inequality:
[tex]\[ 5x + 38 \leq 4(2 - 5x) \][/tex]
First, distribute the 4 on the right side:
[tex]\[ 5x + 38 \leq 8 - 20x \][/tex]
Next, let's move all terms involving [tex]\(x\)[/tex] to one side and constant terms to the other side. We can start by adding [tex]\(20x\)[/tex] to both sides:
[tex]\[ 5x + 20x + 38 \leq 8 \][/tex]
[tex]\[ 25x + 38 \leq 8 \][/tex]
Subtract 38 from both sides to isolate the [tex]\(x\)[/tex] term:
[tex]\[ 25x \leq 8 - 38 \][/tex]
[tex]\[ 25x \leq -30 \][/tex]
Finally, divide both sides by 25 to solve for [tex]\(x\)[/tex]:
[tex]\[ x \leq \frac{-30}{25} \][/tex]
[tex]\[ x \leq -\frac{6}{5} \][/tex]
[tex]\[ x \leq -1.2 \][/tex]
The solution set for the inequality is:
[tex]\[ x \leq -1.2 \][/tex]
To determine the correct graph representing this solution set, we look for the graph where:
1. The line is at [tex]\( x = -1.2 \)[/tex].
2. The shaded region includes all values less than or equal to [tex]\(-1.2\)[/tex].
Without the graphs provided, one would look for the graph that meets these conditions. The correct graph should have a solid line at [tex]\( x = -1.2 \)[/tex] (indicating [tex]\(\leq\)[/tex]) and shading to the left of the line.
Therefore, based on this analysis, the best graph is the one that represents [tex]\( x \leq -1.2 \)[/tex]. Please select the graph (A, B, C, or D) that appropriately indicates this solution set.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.