Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the correct statement about the end behavior of the logarithmic function [tex]\( f(x) = \log(x+3) - 2 \)[/tex], let's break down the problem step by step.
### Step 1: Identify the Vertical Asymptote
The general form of a logarithmic function is [tex]\( \log_b(x - c) + d \)[/tex], where the vertical asymptote occurs at [tex]\( x = c \)[/tex]. For the given function [tex]\( f(x) = \log(x + 3) - 2 \)[/tex]:
[tex]\[ \log(x + 3) \][/tex]
The logarithmic argument [tex]\( x + 3 \)[/tex] must be greater than zero (since the logarithm of a non-positive number is undefined). Therefore, we set up the inequality:
[tex]\[ x + 3 > 0 \][/tex]
[tex]\[ x > -3 \][/tex]
So, the vertical asymptote is at [tex]\( x = -3 \)[/tex], since as [tex]\( x \)[/tex] approaches [tex]\( -3 \)[/tex] from the right, [tex]\( x + 3 \)[/tex] approaches zero.
### Step 2: Analyze the Behavior Near the Vertical Asymptote
Next, consider the behavior of the function as [tex]\( x \)[/tex] approaches the vertical asymptote [tex]\( -3 \)[/tex] from the right.
For values of [tex]\( x \)[/tex] approaching [tex]\( -3 \)[/tex] from the right (i.e., [tex]\( x > -3 \)[/tex]):
[tex]\[ \log(x + 3) \][/tex]
Since [tex]\( x + 3 \)[/tex] is a small positive number approaching zero, [tex]\( \log(x + 3) \)[/tex] approaches [tex]\( - \infty \)[/tex]. Therefore, as [tex]\( x \)[/tex] nears [tex]\( -3 \)[/tex]:
[tex]\[ \log(x + 3) \rightarrow -\infty \][/tex]
Using this in our function:
[tex]\[ f(x) = \log(x + 3) - 2 \][/tex]
[tex]\[ f(x) \rightarrow -\infty - 2 \][/tex]
[tex]\[ f(x) \rightarrow -\infty \][/tex]
Thus, as [tex]\( x \)[/tex] approaches [tex]\( -3 \)[/tex] from the right, [tex]\( f(x) \)[/tex] decreases towards [tex]\( -\infty \)[/tex].
### Conclusion
Given these observations, the correct statement about the end behavior of the logarithmic function [tex]\( f(x) = \log(x + 3) - 2 \)[/tex] is:
A. As [tex]\( x \)[/tex] decreases to the vertical asymptote at [tex]\( x = -3 \)[/tex], [tex]\( y \)[/tex] decreases to negative infinity.
So, the correct answer is:
[tex]\[ \boxed{A} \][/tex]
### Step 1: Identify the Vertical Asymptote
The general form of a logarithmic function is [tex]\( \log_b(x - c) + d \)[/tex], where the vertical asymptote occurs at [tex]\( x = c \)[/tex]. For the given function [tex]\( f(x) = \log(x + 3) - 2 \)[/tex]:
[tex]\[ \log(x + 3) \][/tex]
The logarithmic argument [tex]\( x + 3 \)[/tex] must be greater than zero (since the logarithm of a non-positive number is undefined). Therefore, we set up the inequality:
[tex]\[ x + 3 > 0 \][/tex]
[tex]\[ x > -3 \][/tex]
So, the vertical asymptote is at [tex]\( x = -3 \)[/tex], since as [tex]\( x \)[/tex] approaches [tex]\( -3 \)[/tex] from the right, [tex]\( x + 3 \)[/tex] approaches zero.
### Step 2: Analyze the Behavior Near the Vertical Asymptote
Next, consider the behavior of the function as [tex]\( x \)[/tex] approaches the vertical asymptote [tex]\( -3 \)[/tex] from the right.
For values of [tex]\( x \)[/tex] approaching [tex]\( -3 \)[/tex] from the right (i.e., [tex]\( x > -3 \)[/tex]):
[tex]\[ \log(x + 3) \][/tex]
Since [tex]\( x + 3 \)[/tex] is a small positive number approaching zero, [tex]\( \log(x + 3) \)[/tex] approaches [tex]\( - \infty \)[/tex]. Therefore, as [tex]\( x \)[/tex] nears [tex]\( -3 \)[/tex]:
[tex]\[ \log(x + 3) \rightarrow -\infty \][/tex]
Using this in our function:
[tex]\[ f(x) = \log(x + 3) - 2 \][/tex]
[tex]\[ f(x) \rightarrow -\infty - 2 \][/tex]
[tex]\[ f(x) \rightarrow -\infty \][/tex]
Thus, as [tex]\( x \)[/tex] approaches [tex]\( -3 \)[/tex] from the right, [tex]\( f(x) \)[/tex] decreases towards [tex]\( -\infty \)[/tex].
### Conclusion
Given these observations, the correct statement about the end behavior of the logarithmic function [tex]\( f(x) = \log(x + 3) - 2 \)[/tex] is:
A. As [tex]\( x \)[/tex] decreases to the vertical asymptote at [tex]\( x = -3 \)[/tex], [tex]\( y \)[/tex] decreases to negative infinity.
So, the correct answer is:
[tex]\[ \boxed{A} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.