Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the correct statement about the end behavior of the logarithmic function [tex]\( f(x) = \log(x+3) - 2 \)[/tex], let's break down the problem step by step.
### Step 1: Identify the Vertical Asymptote
The general form of a logarithmic function is [tex]\( \log_b(x - c) + d \)[/tex], where the vertical asymptote occurs at [tex]\( x = c \)[/tex]. For the given function [tex]\( f(x) = \log(x + 3) - 2 \)[/tex]:
[tex]\[ \log(x + 3) \][/tex]
The logarithmic argument [tex]\( x + 3 \)[/tex] must be greater than zero (since the logarithm of a non-positive number is undefined). Therefore, we set up the inequality:
[tex]\[ x + 3 > 0 \][/tex]
[tex]\[ x > -3 \][/tex]
So, the vertical asymptote is at [tex]\( x = -3 \)[/tex], since as [tex]\( x \)[/tex] approaches [tex]\( -3 \)[/tex] from the right, [tex]\( x + 3 \)[/tex] approaches zero.
### Step 2: Analyze the Behavior Near the Vertical Asymptote
Next, consider the behavior of the function as [tex]\( x \)[/tex] approaches the vertical asymptote [tex]\( -3 \)[/tex] from the right.
For values of [tex]\( x \)[/tex] approaching [tex]\( -3 \)[/tex] from the right (i.e., [tex]\( x > -3 \)[/tex]):
[tex]\[ \log(x + 3) \][/tex]
Since [tex]\( x + 3 \)[/tex] is a small positive number approaching zero, [tex]\( \log(x + 3) \)[/tex] approaches [tex]\( - \infty \)[/tex]. Therefore, as [tex]\( x \)[/tex] nears [tex]\( -3 \)[/tex]:
[tex]\[ \log(x + 3) \rightarrow -\infty \][/tex]
Using this in our function:
[tex]\[ f(x) = \log(x + 3) - 2 \][/tex]
[tex]\[ f(x) \rightarrow -\infty - 2 \][/tex]
[tex]\[ f(x) \rightarrow -\infty \][/tex]
Thus, as [tex]\( x \)[/tex] approaches [tex]\( -3 \)[/tex] from the right, [tex]\( f(x) \)[/tex] decreases towards [tex]\( -\infty \)[/tex].
### Conclusion
Given these observations, the correct statement about the end behavior of the logarithmic function [tex]\( f(x) = \log(x + 3) - 2 \)[/tex] is:
A. As [tex]\( x \)[/tex] decreases to the vertical asymptote at [tex]\( x = -3 \)[/tex], [tex]\( y \)[/tex] decreases to negative infinity.
So, the correct answer is:
[tex]\[ \boxed{A} \][/tex]
### Step 1: Identify the Vertical Asymptote
The general form of a logarithmic function is [tex]\( \log_b(x - c) + d \)[/tex], where the vertical asymptote occurs at [tex]\( x = c \)[/tex]. For the given function [tex]\( f(x) = \log(x + 3) - 2 \)[/tex]:
[tex]\[ \log(x + 3) \][/tex]
The logarithmic argument [tex]\( x + 3 \)[/tex] must be greater than zero (since the logarithm of a non-positive number is undefined). Therefore, we set up the inequality:
[tex]\[ x + 3 > 0 \][/tex]
[tex]\[ x > -3 \][/tex]
So, the vertical asymptote is at [tex]\( x = -3 \)[/tex], since as [tex]\( x \)[/tex] approaches [tex]\( -3 \)[/tex] from the right, [tex]\( x + 3 \)[/tex] approaches zero.
### Step 2: Analyze the Behavior Near the Vertical Asymptote
Next, consider the behavior of the function as [tex]\( x \)[/tex] approaches the vertical asymptote [tex]\( -3 \)[/tex] from the right.
For values of [tex]\( x \)[/tex] approaching [tex]\( -3 \)[/tex] from the right (i.e., [tex]\( x > -3 \)[/tex]):
[tex]\[ \log(x + 3) \][/tex]
Since [tex]\( x + 3 \)[/tex] is a small positive number approaching zero, [tex]\( \log(x + 3) \)[/tex] approaches [tex]\( - \infty \)[/tex]. Therefore, as [tex]\( x \)[/tex] nears [tex]\( -3 \)[/tex]:
[tex]\[ \log(x + 3) \rightarrow -\infty \][/tex]
Using this in our function:
[tex]\[ f(x) = \log(x + 3) - 2 \][/tex]
[tex]\[ f(x) \rightarrow -\infty - 2 \][/tex]
[tex]\[ f(x) \rightarrow -\infty \][/tex]
Thus, as [tex]\( x \)[/tex] approaches [tex]\( -3 \)[/tex] from the right, [tex]\( f(x) \)[/tex] decreases towards [tex]\( -\infty \)[/tex].
### Conclusion
Given these observations, the correct statement about the end behavior of the logarithmic function [tex]\( f(x) = \log(x + 3) - 2 \)[/tex] is:
A. As [tex]\( x \)[/tex] decreases to the vertical asymptote at [tex]\( x = -3 \)[/tex], [tex]\( y \)[/tex] decreases to negative infinity.
So, the correct answer is:
[tex]\[ \boxed{A} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.