Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure! Let's break down the transformation of the parent function [tex]\( f(x) = \sqrt[3]{x} \)[/tex] to the function [tex]\( g(x) = f(x+2) - 4 \)[/tex].
1. Parent Function: The parent function is given as [tex]\( f(x) = \sqrt[3]{x} \)[/tex]. This represents a cube root function.
2. Horizontal Shift: The function [tex]\( g(x) = f(x+2) - 4 \)[/tex] modifies the input of the parent function.
- [tex]\( f(x + 2) \)[/tex] indicates a horizontal shift. Specifically, [tex]\( x + 2 \)[/tex] means that every [tex]\( x \)[/tex] value is shifted to the left by 2 units. This is because adding inside the function moves the graph in the opposite direction of the sign.
3. Vertical Shift: The function [tex]\( g(x) = f(x+2) - 4 \)[/tex] also modifies the output of the parent function.
- The subtraction by 4 ([tex]\( - 4 \)[/tex]) outside the function indicates a vertical shift downward. This means that the entire graph is shifted downward by 4 units.
In summary:
- The transformation [tex]\( f(x + 2) \)[/tex] shifts the graph of [tex]\( f(x) = \sqrt[3]{x} \)[/tex] 2 units to the left.
- The transformation [tex]\( - 4 \)[/tex] shifts the graph downward by 4 units.
Thus, the graph of [tex]\( g(x) = \left( \sqrt[3]{x + 2} \right) - 4 \)[/tex] is a vertical shift of the cube root function [tex]\( x^{1/3} \)[/tex] down by 4 units and a horizontal shift to the left by 2 units.
Therefore, to select the correct graph [tex]\( g(x) \)[/tex] from the given options, look for the graph that has the cube root shape and is moved 2 units to the left and 4 units down.
1. Parent Function: The parent function is given as [tex]\( f(x) = \sqrt[3]{x} \)[/tex]. This represents a cube root function.
2. Horizontal Shift: The function [tex]\( g(x) = f(x+2) - 4 \)[/tex] modifies the input of the parent function.
- [tex]\( f(x + 2) \)[/tex] indicates a horizontal shift. Specifically, [tex]\( x + 2 \)[/tex] means that every [tex]\( x \)[/tex] value is shifted to the left by 2 units. This is because adding inside the function moves the graph in the opposite direction of the sign.
3. Vertical Shift: The function [tex]\( g(x) = f(x+2) - 4 \)[/tex] also modifies the output of the parent function.
- The subtraction by 4 ([tex]\( - 4 \)[/tex]) outside the function indicates a vertical shift downward. This means that the entire graph is shifted downward by 4 units.
In summary:
- The transformation [tex]\( f(x + 2) \)[/tex] shifts the graph of [tex]\( f(x) = \sqrt[3]{x} \)[/tex] 2 units to the left.
- The transformation [tex]\( - 4 \)[/tex] shifts the graph downward by 4 units.
Thus, the graph of [tex]\( g(x) = \left( \sqrt[3]{x + 2} \right) - 4 \)[/tex] is a vertical shift of the cube root function [tex]\( x^{1/3} \)[/tex] down by 4 units and a horizontal shift to the left by 2 units.
Therefore, to select the correct graph [tex]\( g(x) \)[/tex] from the given options, look for the graph that has the cube root shape and is moved 2 units to the left and 4 units down.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.