Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure! Let's break down the transformation of the parent function [tex]\( f(x) = \sqrt[3]{x} \)[/tex] to the function [tex]\( g(x) = f(x+2) - 4 \)[/tex].
1. Parent Function: The parent function is given as [tex]\( f(x) = \sqrt[3]{x} \)[/tex]. This represents a cube root function.
2. Horizontal Shift: The function [tex]\( g(x) = f(x+2) - 4 \)[/tex] modifies the input of the parent function.
- [tex]\( f(x + 2) \)[/tex] indicates a horizontal shift. Specifically, [tex]\( x + 2 \)[/tex] means that every [tex]\( x \)[/tex] value is shifted to the left by 2 units. This is because adding inside the function moves the graph in the opposite direction of the sign.
3. Vertical Shift: The function [tex]\( g(x) = f(x+2) - 4 \)[/tex] also modifies the output of the parent function.
- The subtraction by 4 ([tex]\( - 4 \)[/tex]) outside the function indicates a vertical shift downward. This means that the entire graph is shifted downward by 4 units.
In summary:
- The transformation [tex]\( f(x + 2) \)[/tex] shifts the graph of [tex]\( f(x) = \sqrt[3]{x} \)[/tex] 2 units to the left.
- The transformation [tex]\( - 4 \)[/tex] shifts the graph downward by 4 units.
Thus, the graph of [tex]\( g(x) = \left( \sqrt[3]{x + 2} \right) - 4 \)[/tex] is a vertical shift of the cube root function [tex]\( x^{1/3} \)[/tex] down by 4 units and a horizontal shift to the left by 2 units.
Therefore, to select the correct graph [tex]\( g(x) \)[/tex] from the given options, look for the graph that has the cube root shape and is moved 2 units to the left and 4 units down.
1. Parent Function: The parent function is given as [tex]\( f(x) = \sqrt[3]{x} \)[/tex]. This represents a cube root function.
2. Horizontal Shift: The function [tex]\( g(x) = f(x+2) - 4 \)[/tex] modifies the input of the parent function.
- [tex]\( f(x + 2) \)[/tex] indicates a horizontal shift. Specifically, [tex]\( x + 2 \)[/tex] means that every [tex]\( x \)[/tex] value is shifted to the left by 2 units. This is because adding inside the function moves the graph in the opposite direction of the sign.
3. Vertical Shift: The function [tex]\( g(x) = f(x+2) - 4 \)[/tex] also modifies the output of the parent function.
- The subtraction by 4 ([tex]\( - 4 \)[/tex]) outside the function indicates a vertical shift downward. This means that the entire graph is shifted downward by 4 units.
In summary:
- The transformation [tex]\( f(x + 2) \)[/tex] shifts the graph of [tex]\( f(x) = \sqrt[3]{x} \)[/tex] 2 units to the left.
- The transformation [tex]\( - 4 \)[/tex] shifts the graph downward by 4 units.
Thus, the graph of [tex]\( g(x) = \left( \sqrt[3]{x + 2} \right) - 4 \)[/tex] is a vertical shift of the cube root function [tex]\( x^{1/3} \)[/tex] down by 4 units and a horizontal shift to the left by 2 units.
Therefore, to select the correct graph [tex]\( g(x) \)[/tex] from the given options, look for the graph that has the cube root shape and is moved 2 units to the left and 4 units down.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.