Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the value of [tex]\( p \)[/tex] in this problem, we need to use the information given and apply the Hardy-Weinberg equilibrium principle.
1. Understanding the Data:
- We are given that 33% of the organisms have short legs. This corresponds to the recessive genotype [tex]\( q^2 \)[/tex].
- Hence, [tex]\( q^2 = 0.33 \)[/tex].
2. Finding [tex]\( q \)[/tex]:
- To find [tex]\( q \)[/tex], we take the square root of [tex]\( q^2 \)[/tex]:
[tex]\[ q = \sqrt{0.33} \approx 0.5745 \][/tex]
3. Finding [tex]\( p \)[/tex]:
- According to the Hardy-Weinberg principle, the sum of the frequency of the dominant allele ([tex]\( p \)[/tex]) and the recessive allele ([tex]\( q \)[/tex]) in the population must equal 1:
[tex]\[ p + q = 1 \][/tex]
- We already have [tex]\( q \)[/tex] from the previous step:
[tex]\[ p = 1 - q = 1 - 0.5745 \approx 0.4255 \][/tex]
Given these calculations, the allele frequency [tex]\( p \)[/tex] for long legs is found to be approximately 0.4255, which closely matches option B (0.43).
Therefore, the correct answer is:
B. 0.43
1. Understanding the Data:
- We are given that 33% of the organisms have short legs. This corresponds to the recessive genotype [tex]\( q^2 \)[/tex].
- Hence, [tex]\( q^2 = 0.33 \)[/tex].
2. Finding [tex]\( q \)[/tex]:
- To find [tex]\( q \)[/tex], we take the square root of [tex]\( q^2 \)[/tex]:
[tex]\[ q = \sqrt{0.33} \approx 0.5745 \][/tex]
3. Finding [tex]\( p \)[/tex]:
- According to the Hardy-Weinberg principle, the sum of the frequency of the dominant allele ([tex]\( p \)[/tex]) and the recessive allele ([tex]\( q \)[/tex]) in the population must equal 1:
[tex]\[ p + q = 1 \][/tex]
- We already have [tex]\( q \)[/tex] from the previous step:
[tex]\[ p = 1 - q = 1 - 0.5745 \approx 0.4255 \][/tex]
Given these calculations, the allele frequency [tex]\( p \)[/tex] for long legs is found to be approximately 0.4255, which closely matches option B (0.43).
Therefore, the correct answer is:
B. 0.43
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.