Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the equation of the line in slope-intercept form [tex]\( y = mx + b \)[/tex] from the given points on the table, we need to follow these steps:
### Step 1: Calculate the Slope [tex]\( m \)[/tex]
The slope [tex]\( m \)[/tex] of a line through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] can be found using the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
We will use the first two points [tex]\((-3, -8)\)[/tex] and [tex]\((-1, -2)\)[/tex]:
[tex]\[ x_1 = -3, \quad y_1 = -8 \][/tex]
[tex]\[ x_2 = -1, \quad y_2 = -2 \][/tex]
Plug these values into the slope formula:
[tex]\[ m = \frac{-2 - (-8)}{-1 - (-3)} = \frac{-2 + 8}{-1 + 3} = \frac{6}{2} = 3 \][/tex]
So, the slope [tex]\( m \)[/tex] is [tex]\( 3.0 \)[/tex].
### Step 2: Determine the Y-Intercept [tex]\( b \)[/tex]
The slope-intercept form of the equation is [tex]\( y = mx + b \)[/tex]. We have [tex]\( m = 3.0 \)[/tex], and we need to determine [tex]\( b \)[/tex]. We can use any point from the table. Let's use the point [tex]\((-3, -8)\)[/tex]:
Plug in the values of [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( m \)[/tex] into the equation [tex]\( y = mx + b \)[/tex]:
[tex]\[ -8 = 3(-3) + b \][/tex]
Simplify this equation to find [tex]\( b \)[/tex]:
[tex]\[ -8 = -9 + b \][/tex]
Add 9 to both sides to solve for [tex]\( b \)[/tex]:
[tex]\[ b = 1 \][/tex]
So, the y-intercept [tex]\( b \)[/tex] is [tex]\( 1.0 \)[/tex].
### Final Equation
By combining the slope [tex]\( m = 3.0 \)[/tex] and the y-intercept [tex]\( b = 1.0 \)[/tex], the equation of the line in slope-intercept form is:
[tex]\[ y = 3.0x + 1.0 \][/tex]
Therefore, the equation representing the function shown in the table is:
[tex]\[ y = \boxed{3.0}x + \boxed{1.0} \][/tex]
### Step 1: Calculate the Slope [tex]\( m \)[/tex]
The slope [tex]\( m \)[/tex] of a line through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] can be found using the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
We will use the first two points [tex]\((-3, -8)\)[/tex] and [tex]\((-1, -2)\)[/tex]:
[tex]\[ x_1 = -3, \quad y_1 = -8 \][/tex]
[tex]\[ x_2 = -1, \quad y_2 = -2 \][/tex]
Plug these values into the slope formula:
[tex]\[ m = \frac{-2 - (-8)}{-1 - (-3)} = \frac{-2 + 8}{-1 + 3} = \frac{6}{2} = 3 \][/tex]
So, the slope [tex]\( m \)[/tex] is [tex]\( 3.0 \)[/tex].
### Step 2: Determine the Y-Intercept [tex]\( b \)[/tex]
The slope-intercept form of the equation is [tex]\( y = mx + b \)[/tex]. We have [tex]\( m = 3.0 \)[/tex], and we need to determine [tex]\( b \)[/tex]. We can use any point from the table. Let's use the point [tex]\((-3, -8)\)[/tex]:
Plug in the values of [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( m \)[/tex] into the equation [tex]\( y = mx + b \)[/tex]:
[tex]\[ -8 = 3(-3) + b \][/tex]
Simplify this equation to find [tex]\( b \)[/tex]:
[tex]\[ -8 = -9 + b \][/tex]
Add 9 to both sides to solve for [tex]\( b \)[/tex]:
[tex]\[ b = 1 \][/tex]
So, the y-intercept [tex]\( b \)[/tex] is [tex]\( 1.0 \)[/tex].
### Final Equation
By combining the slope [tex]\( m = 3.0 \)[/tex] and the y-intercept [tex]\( b = 1.0 \)[/tex], the equation of the line in slope-intercept form is:
[tex]\[ y = 3.0x + 1.0 \][/tex]
Therefore, the equation representing the function shown in the table is:
[tex]\[ y = \boxed{3.0}x + \boxed{1.0} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.