Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's solve the problem step-by-step.
1. Given equations:
- The height of the body as a function of time [tex]\( t \)[/tex] is given by [tex]\( y = 8t - 5t^2 \)[/tex].
- The horizontal distance of the body as a function of time [tex]\( t \)[/tex] is given by [tex]\( x = 6t \)[/tex].
2. Determine the initial vertical velocity component [tex]\( v_{y0} \)[/tex]:
- The height equation [tex]\( y = 8t - 5t^2 \)[/tex] represents a quadratic equation, where the coefficient of [tex]\( t \)[/tex] in the linear term (8) is the initial vertical velocity.
- Therefore, [tex]\( v_{y0} = 8 \, \text{m/s} \)[/tex].
3. Determine the initial horizontal velocity component [tex]\( v_{x0} \)[/tex]:
- The horizontal distance equation [tex]\( x = 6t \)[/tex] represents a linear equation, where the coefficient of [tex]\( t \)[/tex] (6) is the initial horizontal velocity.
- Therefore, [tex]\( v_{x0} = 6 \, \text{m/s} \)[/tex].
4. Calculate the resultant initial velocity [tex]\( v_0 \)[/tex]:
To find the magnitude of the initial velocity, we use the Pythagorean theorem. The resultant velocity is the vector sum of the horizontal and vertical components.
[tex]\[ v_0 = \sqrt{v_{x0}^2 + v_{y0}^2} \][/tex]
Substituting the given values:
[tex]\[ v_0 = \sqrt{(6)^2 + (8)^2} = \sqrt{36 + 64} = \sqrt{100} = 10 \, \text{m/s} \][/tex]
Thus, the initial velocity of the body is [tex]\( \boxed{10 \, \text{m/s}} \)[/tex].
5. Select the correct option:
From the choices provided, the correct answer is:
[tex]\[ (c) \, 10 \, \text{m/s} \][/tex]
1. Given equations:
- The height of the body as a function of time [tex]\( t \)[/tex] is given by [tex]\( y = 8t - 5t^2 \)[/tex].
- The horizontal distance of the body as a function of time [tex]\( t \)[/tex] is given by [tex]\( x = 6t \)[/tex].
2. Determine the initial vertical velocity component [tex]\( v_{y0} \)[/tex]:
- The height equation [tex]\( y = 8t - 5t^2 \)[/tex] represents a quadratic equation, where the coefficient of [tex]\( t \)[/tex] in the linear term (8) is the initial vertical velocity.
- Therefore, [tex]\( v_{y0} = 8 \, \text{m/s} \)[/tex].
3. Determine the initial horizontal velocity component [tex]\( v_{x0} \)[/tex]:
- The horizontal distance equation [tex]\( x = 6t \)[/tex] represents a linear equation, where the coefficient of [tex]\( t \)[/tex] (6) is the initial horizontal velocity.
- Therefore, [tex]\( v_{x0} = 6 \, \text{m/s} \)[/tex].
4. Calculate the resultant initial velocity [tex]\( v_0 \)[/tex]:
To find the magnitude of the initial velocity, we use the Pythagorean theorem. The resultant velocity is the vector sum of the horizontal and vertical components.
[tex]\[ v_0 = \sqrt{v_{x0}^2 + v_{y0}^2} \][/tex]
Substituting the given values:
[tex]\[ v_0 = \sqrt{(6)^2 + (8)^2} = \sqrt{36 + 64} = \sqrt{100} = 10 \, \text{m/s} \][/tex]
Thus, the initial velocity of the body is [tex]\( \boxed{10 \, \text{m/s}} \)[/tex].
5. Select the correct option:
From the choices provided, the correct answer is:
[tex]\[ (c) \, 10 \, \text{m/s} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.