Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's solve the problem step-by-step.
1. Given equations:
- The height of the body as a function of time [tex]\( t \)[/tex] is given by [tex]\( y = 8t - 5t^2 \)[/tex].
- The horizontal distance of the body as a function of time [tex]\( t \)[/tex] is given by [tex]\( x = 6t \)[/tex].
2. Determine the initial vertical velocity component [tex]\( v_{y0} \)[/tex]:
- The height equation [tex]\( y = 8t - 5t^2 \)[/tex] represents a quadratic equation, where the coefficient of [tex]\( t \)[/tex] in the linear term (8) is the initial vertical velocity.
- Therefore, [tex]\( v_{y0} = 8 \, \text{m/s} \)[/tex].
3. Determine the initial horizontal velocity component [tex]\( v_{x0} \)[/tex]:
- The horizontal distance equation [tex]\( x = 6t \)[/tex] represents a linear equation, where the coefficient of [tex]\( t \)[/tex] (6) is the initial horizontal velocity.
- Therefore, [tex]\( v_{x0} = 6 \, \text{m/s} \)[/tex].
4. Calculate the resultant initial velocity [tex]\( v_0 \)[/tex]:
To find the magnitude of the initial velocity, we use the Pythagorean theorem. The resultant velocity is the vector sum of the horizontal and vertical components.
[tex]\[ v_0 = \sqrt{v_{x0}^2 + v_{y0}^2} \][/tex]
Substituting the given values:
[tex]\[ v_0 = \sqrt{(6)^2 + (8)^2} = \sqrt{36 + 64} = \sqrt{100} = 10 \, \text{m/s} \][/tex]
Thus, the initial velocity of the body is [tex]\( \boxed{10 \, \text{m/s}} \)[/tex].
5. Select the correct option:
From the choices provided, the correct answer is:
[tex]\[ (c) \, 10 \, \text{m/s} \][/tex]
1. Given equations:
- The height of the body as a function of time [tex]\( t \)[/tex] is given by [tex]\( y = 8t - 5t^2 \)[/tex].
- The horizontal distance of the body as a function of time [tex]\( t \)[/tex] is given by [tex]\( x = 6t \)[/tex].
2. Determine the initial vertical velocity component [tex]\( v_{y0} \)[/tex]:
- The height equation [tex]\( y = 8t - 5t^2 \)[/tex] represents a quadratic equation, where the coefficient of [tex]\( t \)[/tex] in the linear term (8) is the initial vertical velocity.
- Therefore, [tex]\( v_{y0} = 8 \, \text{m/s} \)[/tex].
3. Determine the initial horizontal velocity component [tex]\( v_{x0} \)[/tex]:
- The horizontal distance equation [tex]\( x = 6t \)[/tex] represents a linear equation, where the coefficient of [tex]\( t \)[/tex] (6) is the initial horizontal velocity.
- Therefore, [tex]\( v_{x0} = 6 \, \text{m/s} \)[/tex].
4. Calculate the resultant initial velocity [tex]\( v_0 \)[/tex]:
To find the magnitude of the initial velocity, we use the Pythagorean theorem. The resultant velocity is the vector sum of the horizontal and vertical components.
[tex]\[ v_0 = \sqrt{v_{x0}^2 + v_{y0}^2} \][/tex]
Substituting the given values:
[tex]\[ v_0 = \sqrt{(6)^2 + (8)^2} = \sqrt{36 + 64} = \sqrt{100} = 10 \, \text{m/s} \][/tex]
Thus, the initial velocity of the body is [tex]\( \boxed{10 \, \text{m/s}} \)[/tex].
5. Select the correct option:
From the choices provided, the correct answer is:
[tex]\[ (c) \, 10 \, \text{m/s} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.