Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's solve the problem step-by-step.
1. Given equations:
- The height of the body as a function of time [tex]\( t \)[/tex] is given by [tex]\( y = 8t - 5t^2 \)[/tex].
- The horizontal distance of the body as a function of time [tex]\( t \)[/tex] is given by [tex]\( x = 6t \)[/tex].
2. Determine the initial vertical velocity component [tex]\( v_{y0} \)[/tex]:
- The height equation [tex]\( y = 8t - 5t^2 \)[/tex] represents a quadratic equation, where the coefficient of [tex]\( t \)[/tex] in the linear term (8) is the initial vertical velocity.
- Therefore, [tex]\( v_{y0} = 8 \, \text{m/s} \)[/tex].
3. Determine the initial horizontal velocity component [tex]\( v_{x0} \)[/tex]:
- The horizontal distance equation [tex]\( x = 6t \)[/tex] represents a linear equation, where the coefficient of [tex]\( t \)[/tex] (6) is the initial horizontal velocity.
- Therefore, [tex]\( v_{x0} = 6 \, \text{m/s} \)[/tex].
4. Calculate the resultant initial velocity [tex]\( v_0 \)[/tex]:
To find the magnitude of the initial velocity, we use the Pythagorean theorem. The resultant velocity is the vector sum of the horizontal and vertical components.
[tex]\[ v_0 = \sqrt{v_{x0}^2 + v_{y0}^2} \][/tex]
Substituting the given values:
[tex]\[ v_0 = \sqrt{(6)^2 + (8)^2} = \sqrt{36 + 64} = \sqrt{100} = 10 \, \text{m/s} \][/tex]
Thus, the initial velocity of the body is [tex]\( \boxed{10 \, \text{m/s}} \)[/tex].
5. Select the correct option:
From the choices provided, the correct answer is:
[tex]\[ (c) \, 10 \, \text{m/s} \][/tex]
1. Given equations:
- The height of the body as a function of time [tex]\( t \)[/tex] is given by [tex]\( y = 8t - 5t^2 \)[/tex].
- The horizontal distance of the body as a function of time [tex]\( t \)[/tex] is given by [tex]\( x = 6t \)[/tex].
2. Determine the initial vertical velocity component [tex]\( v_{y0} \)[/tex]:
- The height equation [tex]\( y = 8t - 5t^2 \)[/tex] represents a quadratic equation, where the coefficient of [tex]\( t \)[/tex] in the linear term (8) is the initial vertical velocity.
- Therefore, [tex]\( v_{y0} = 8 \, \text{m/s} \)[/tex].
3. Determine the initial horizontal velocity component [tex]\( v_{x0} \)[/tex]:
- The horizontal distance equation [tex]\( x = 6t \)[/tex] represents a linear equation, where the coefficient of [tex]\( t \)[/tex] (6) is the initial horizontal velocity.
- Therefore, [tex]\( v_{x0} = 6 \, \text{m/s} \)[/tex].
4. Calculate the resultant initial velocity [tex]\( v_0 \)[/tex]:
To find the magnitude of the initial velocity, we use the Pythagorean theorem. The resultant velocity is the vector sum of the horizontal and vertical components.
[tex]\[ v_0 = \sqrt{v_{x0}^2 + v_{y0}^2} \][/tex]
Substituting the given values:
[tex]\[ v_0 = \sqrt{(6)^2 + (8)^2} = \sqrt{36 + 64} = \sqrt{100} = 10 \, \text{m/s} \][/tex]
Thus, the initial velocity of the body is [tex]\( \boxed{10 \, \text{m/s}} \)[/tex].
5. Select the correct option:
From the choices provided, the correct answer is:
[tex]\[ (c) \, 10 \, \text{m/s} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.