Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Given the vertex [tex]\(\left(-\frac{1}{2}, 3\right)\)[/tex] and the directrix [tex]\(x=-\frac{13}{24}\)[/tex], what are the values for [tex]\(a\)[/tex], [tex]\(h\)[/tex], and [tex]\(k\)[/tex] in the vertex form of the parabola?

Sagot :

To determine the values of [tex]\( a \)[/tex], [tex]\( h \)[/tex], and [tex]\( k \)[/tex] in the vertex form of the parabola, we will analyze the given information about the vertex and the directrix.

1. Identify [tex]\( h \)[/tex] and [tex]\( k \)[/tex] from the vertex:
The vertex [tex]\(\left(-\frac{1}{2}, 3\right)\)[/tex] gives us:
[tex]\[ h = -\frac{1}{2} \][/tex]
[tex]\[ k = 3 \][/tex]

2. Use the directrix to find [tex]\( a \)[/tex]:
The directrix given is [tex]\( x = -\frac{13}{24} \)[/tex]. To find the value of [tex]\( a \)[/tex] in the equation of the parabola, consider the distance from the directrix to the vertex. For a vertically oriented parabola, we use the relationship:
[tex]\[ | \text{directrix} - h | = \frac{1}{4a} \][/tex]
Here, [tex]\(| \text{directrix} - h |\)[/tex] is the absolute value of the difference between the x-coordinates of the directrix and the vertex.

The x-coordinate of the vertex is:
[tex]\[ h = -\frac{1}{2} \][/tex]
The x-coordinate of the directrix is:
[tex]\[ \text{directrix} = -\frac{13}{24} \][/tex]

Calculate the absolute difference:
[tex]\[ \left| -\frac{13}{24} - \left( -\frac{1}{2} \right) \right| = \left| -\frac{13}{24} + \frac{12}{24} \right| = \left| -\frac{13}{24} + \frac{12}{24} \right| = \left| -\frac{1}{24} \right| = \frac{1}{24} \][/tex]

Now, use this difference to find [tex]\( a \)[/tex]:
[tex]\[ \frac{1}{24} = \frac{1}{4a} \][/tex]

Solving for [tex]\( a \)[/tex]:
[tex]\[ 4a = 24 \implies a = 6 \][/tex]

Therefore, we find:
[tex]\[ h = -\frac{1}{2}, \quad k = 3, \quad a = 6 \][/tex]

So, the values for [tex]\( a \)[/tex], [tex]\( h \)[/tex], and [tex]\( k \)[/tex] in the vertex form of the parabola are:
[tex]\[ a = 6, \quad h = -\frac{1}{2}, \quad k = 3 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.