Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Given:
- The force of repulsion between two like-charged objects [tex]\( F = 8.2 \times 10^{-7} \)[/tex] newtons.
- The charge on each object [tex]\( q_1 = q_2 = 6.7 \times 10^{-9} \)[/tex] coulombs.
- The electrostatic constant [tex]\( k = 9.0 \times 10^9 \)[/tex] Nm²/C².
To find: The distance [tex]\( r \)[/tex] between the two charges.
We use Coulomb's Law, which relates the force between two point charges to the distance between them:
[tex]\[ F = k \frac{q_1 q_2}{r^2} \][/tex]
We need to solve for [tex]\( r \)[/tex]. Rearranging the formula to isolate [tex]\( r \)[/tex]:
[tex]\[ r^2 = k \frac{q_1 q_2}{F} \][/tex]
Plugging in the values:
[tex]\[ r^2 = \frac{(9.0 \times 10^9) \times (6.7 \times 10^{-9}) \times (6.7 \times 10^{-9})}{8.2 \times 10^{-7}} \][/tex]
Evaluating the expression under the square root:
[tex]\[ r^2 \approx 0.49269512195121967 \][/tex]
Taking the square root of both sides to find [tex]\( r \)[/tex]:
[tex]\[ r \approx \sqrt{0.49269512195121967} \approx 0.7019224472484262 \, \text{meters} \][/tex]
Therefore, the distance between the two charges is approximately [tex]\( 0.70 \)[/tex] meters. The correct answer is:
B. 0.70 meters
- The force of repulsion between two like-charged objects [tex]\( F = 8.2 \times 10^{-7} \)[/tex] newtons.
- The charge on each object [tex]\( q_1 = q_2 = 6.7 \times 10^{-9} \)[/tex] coulombs.
- The electrostatic constant [tex]\( k = 9.0 \times 10^9 \)[/tex] Nm²/C².
To find: The distance [tex]\( r \)[/tex] between the two charges.
We use Coulomb's Law, which relates the force between two point charges to the distance between them:
[tex]\[ F = k \frac{q_1 q_2}{r^2} \][/tex]
We need to solve for [tex]\( r \)[/tex]. Rearranging the formula to isolate [tex]\( r \)[/tex]:
[tex]\[ r^2 = k \frac{q_1 q_2}{F} \][/tex]
Plugging in the values:
[tex]\[ r^2 = \frac{(9.0 \times 10^9) \times (6.7 \times 10^{-9}) \times (6.7 \times 10^{-9})}{8.2 \times 10^{-7}} \][/tex]
Evaluating the expression under the square root:
[tex]\[ r^2 \approx 0.49269512195121967 \][/tex]
Taking the square root of both sides to find [tex]\( r \)[/tex]:
[tex]\[ r \approx \sqrt{0.49269512195121967} \approx 0.7019224472484262 \, \text{meters} \][/tex]
Therefore, the distance between the two charges is approximately [tex]\( 0.70 \)[/tex] meters. The correct answer is:
B. 0.70 meters
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.