At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure! Let's go through the problem step by step to determine the specific heat capacity of copper.
Given data:
- Mass of the copper rod, [tex]\( m = 200.0 \text{ g} \)[/tex]
- Initial temperature, [tex]\( T_{\text{initial}} = 20.0^{\circ} \text{C} \)[/tex]
- Final temperature, [tex]\( T_{\text{final}} = 40.0^{\circ} \text{C} \)[/tex]
- Heat added, [tex]\( q = 1540 \text{ J} \)[/tex]
The formula to calculate the heat added is:
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
Here, [tex]\( \Delta T \)[/tex] is the change in temperature, and [tex]\( C_p \)[/tex] is the specific heat capacity.
First, let's determine the temperature change [tex]\( \Delta T \)[/tex]:
[tex]\[ \Delta T = T_{\text{final}} - T_{\text{initial}} \][/tex]
[tex]\[ \Delta T = 40.0^{\circ} \text{C} - 20.0^{\circ} \text{C} \][/tex]
[tex]\[ \Delta T = 20.0^{\circ} \text{C} \][/tex]
Now, we can rearrange the heat equation to solve for the specific heat capacity [tex]\( C_p \)[/tex]:
[tex]\[ C_p = \frac{q}{m \cdot \Delta T} \][/tex]
Substituting the given values:
[tex]\[ C_p = \frac{1540 \text{ J}}{200.0 \text{ g} \cdot 20.0^{\circ} \text{C}} \][/tex]
Calculating the specific heat capacity:
[tex]\[ C_p = \frac{1540}{200.0 \cdot 20.0} \][/tex]
[tex]\[ C_p = \frac{1540}{4000.0} \][/tex]
[tex]\[ C_p = 0.385 \text{ J} / (\text{g} \cdot {}^{\circ} \text{C}) \][/tex]
Therefore, the specific heat capacity of copper is [tex]\( 0.385 \text{ J} / (\text{g} \cdot {}^{\circ} \text{C}) \)[/tex].
So, the correct option from the provided choices is:
[tex]\[ 0.385 \text{ J} / (\text{g}, {}^{\circ} \text{C}) \][/tex]
Given data:
- Mass of the copper rod, [tex]\( m = 200.0 \text{ g} \)[/tex]
- Initial temperature, [tex]\( T_{\text{initial}} = 20.0^{\circ} \text{C} \)[/tex]
- Final temperature, [tex]\( T_{\text{final}} = 40.0^{\circ} \text{C} \)[/tex]
- Heat added, [tex]\( q = 1540 \text{ J} \)[/tex]
The formula to calculate the heat added is:
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
Here, [tex]\( \Delta T \)[/tex] is the change in temperature, and [tex]\( C_p \)[/tex] is the specific heat capacity.
First, let's determine the temperature change [tex]\( \Delta T \)[/tex]:
[tex]\[ \Delta T = T_{\text{final}} - T_{\text{initial}} \][/tex]
[tex]\[ \Delta T = 40.0^{\circ} \text{C} - 20.0^{\circ} \text{C} \][/tex]
[tex]\[ \Delta T = 20.0^{\circ} \text{C} \][/tex]
Now, we can rearrange the heat equation to solve for the specific heat capacity [tex]\( C_p \)[/tex]:
[tex]\[ C_p = \frac{q}{m \cdot \Delta T} \][/tex]
Substituting the given values:
[tex]\[ C_p = \frac{1540 \text{ J}}{200.0 \text{ g} \cdot 20.0^{\circ} \text{C}} \][/tex]
Calculating the specific heat capacity:
[tex]\[ C_p = \frac{1540}{200.0 \cdot 20.0} \][/tex]
[tex]\[ C_p = \frac{1540}{4000.0} \][/tex]
[tex]\[ C_p = 0.385 \text{ J} / (\text{g} \cdot {}^{\circ} \text{C}) \][/tex]
Therefore, the specific heat capacity of copper is [tex]\( 0.385 \text{ J} / (\text{g} \cdot {}^{\circ} \text{C}) \)[/tex].
So, the correct option from the provided choices is:
[tex]\[ 0.385 \text{ J} / (\text{g}, {}^{\circ} \text{C}) \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.