Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure! Let's go through the problem step by step to determine the specific heat capacity of copper.
Given data:
- Mass of the copper rod, [tex]\( m = 200.0 \text{ g} \)[/tex]
- Initial temperature, [tex]\( T_{\text{initial}} = 20.0^{\circ} \text{C} \)[/tex]
- Final temperature, [tex]\( T_{\text{final}} = 40.0^{\circ} \text{C} \)[/tex]
- Heat added, [tex]\( q = 1540 \text{ J} \)[/tex]
The formula to calculate the heat added is:
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
Here, [tex]\( \Delta T \)[/tex] is the change in temperature, and [tex]\( C_p \)[/tex] is the specific heat capacity.
First, let's determine the temperature change [tex]\( \Delta T \)[/tex]:
[tex]\[ \Delta T = T_{\text{final}} - T_{\text{initial}} \][/tex]
[tex]\[ \Delta T = 40.0^{\circ} \text{C} - 20.0^{\circ} \text{C} \][/tex]
[tex]\[ \Delta T = 20.0^{\circ} \text{C} \][/tex]
Now, we can rearrange the heat equation to solve for the specific heat capacity [tex]\( C_p \)[/tex]:
[tex]\[ C_p = \frac{q}{m \cdot \Delta T} \][/tex]
Substituting the given values:
[tex]\[ C_p = \frac{1540 \text{ J}}{200.0 \text{ g} \cdot 20.0^{\circ} \text{C}} \][/tex]
Calculating the specific heat capacity:
[tex]\[ C_p = \frac{1540}{200.0 \cdot 20.0} \][/tex]
[tex]\[ C_p = \frac{1540}{4000.0} \][/tex]
[tex]\[ C_p = 0.385 \text{ J} / (\text{g} \cdot {}^{\circ} \text{C}) \][/tex]
Therefore, the specific heat capacity of copper is [tex]\( 0.385 \text{ J} / (\text{g} \cdot {}^{\circ} \text{C}) \)[/tex].
So, the correct option from the provided choices is:
[tex]\[ 0.385 \text{ J} / (\text{g}, {}^{\circ} \text{C}) \][/tex]
Given data:
- Mass of the copper rod, [tex]\( m = 200.0 \text{ g} \)[/tex]
- Initial temperature, [tex]\( T_{\text{initial}} = 20.0^{\circ} \text{C} \)[/tex]
- Final temperature, [tex]\( T_{\text{final}} = 40.0^{\circ} \text{C} \)[/tex]
- Heat added, [tex]\( q = 1540 \text{ J} \)[/tex]
The formula to calculate the heat added is:
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
Here, [tex]\( \Delta T \)[/tex] is the change in temperature, and [tex]\( C_p \)[/tex] is the specific heat capacity.
First, let's determine the temperature change [tex]\( \Delta T \)[/tex]:
[tex]\[ \Delta T = T_{\text{final}} - T_{\text{initial}} \][/tex]
[tex]\[ \Delta T = 40.0^{\circ} \text{C} - 20.0^{\circ} \text{C} \][/tex]
[tex]\[ \Delta T = 20.0^{\circ} \text{C} \][/tex]
Now, we can rearrange the heat equation to solve for the specific heat capacity [tex]\( C_p \)[/tex]:
[tex]\[ C_p = \frac{q}{m \cdot \Delta T} \][/tex]
Substituting the given values:
[tex]\[ C_p = \frac{1540 \text{ J}}{200.0 \text{ g} \cdot 20.0^{\circ} \text{C}} \][/tex]
Calculating the specific heat capacity:
[tex]\[ C_p = \frac{1540}{200.0 \cdot 20.0} \][/tex]
[tex]\[ C_p = \frac{1540}{4000.0} \][/tex]
[tex]\[ C_p = 0.385 \text{ J} / (\text{g} \cdot {}^{\circ} \text{C}) \][/tex]
Therefore, the specific heat capacity of copper is [tex]\( 0.385 \text{ J} / (\text{g} \cdot {}^{\circ} \text{C}) \)[/tex].
So, the correct option from the provided choices is:
[tex]\[ 0.385 \text{ J} / (\text{g}, {}^{\circ} \text{C}) \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.