At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the correct radical form of the expression [tex]\(\left(\frac{p^{12} q^{\frac{3}{2}}}{64}\right)^{\frac{5}{6}}\)[/tex], let's analyze the given expression step by step.
Starting with the expression:
[tex]\[ \left(\frac{p^{12} q^{\frac{3}{2}}}{64}\right)^{\frac{5}{6}} \][/tex]
The expression involves raising the fraction [tex]\(\frac{p^{12} q^{\frac{3}{2}}}{64}\)[/tex] to the power of [tex]\(\frac{5}{6}\)[/tex]. In order to convert this into a radical form, we utilize the property that the exponent [tex]\(\frac{a}{b}\)[/tex] can be interpreted as taking the [tex]\(b\)[/tex]-th root and then raising to the power [tex]\(a\)[/tex].
Thus, [tex]\(\left(\frac{p^{12} q^{\frac{3}{2}}}{64}\right)^{\frac{5}{6}}\)[/tex] which means:
[tex]\[ \left(\frac{p^{12} q^{\frac{3}{2}}}{64}\right)^{\frac{5}{6}} = \left(\sqrt[6]{\frac{p^{12} q^{\frac{3}{2}}}{64}}\right)^5 \][/tex]
This matches with option A:
[tex]\[ A. \left(\sqrt[6]{\frac{p^{12} q^{\frac{3}{2}}}{64}}\right)^5 \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{A} \][/tex]
Starting with the expression:
[tex]\[ \left(\frac{p^{12} q^{\frac{3}{2}}}{64}\right)^{\frac{5}{6}} \][/tex]
The expression involves raising the fraction [tex]\(\frac{p^{12} q^{\frac{3}{2}}}{64}\)[/tex] to the power of [tex]\(\frac{5}{6}\)[/tex]. In order to convert this into a radical form, we utilize the property that the exponent [tex]\(\frac{a}{b}\)[/tex] can be interpreted as taking the [tex]\(b\)[/tex]-th root and then raising to the power [tex]\(a\)[/tex].
Thus, [tex]\(\left(\frac{p^{12} q^{\frac{3}{2}}}{64}\right)^{\frac{5}{6}}\)[/tex] which means:
[tex]\[ \left(\frac{p^{12} q^{\frac{3}{2}}}{64}\right)^{\frac{5}{6}} = \left(\sqrt[6]{\frac{p^{12} q^{\frac{3}{2}}}{64}}\right)^5 \][/tex]
This matches with option A:
[tex]\[ A. \left(\sqrt[6]{\frac{p^{12} q^{\frac{3}{2}}}{64}}\right)^5 \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{A} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.