Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's break down and solve the inequalities step-by-step to find the constraints on [tex]\( w \)[/tex] (the width of the rectangular pool). We are given the following system of inequalities:
1. [tex]\( w \leq 10 - 1 \)[/tex]
2. [tex]\( 21 + 2w \geq 62 \)[/tex]
First, let's solve each inequality individually.
Step 1: Solve [tex]\( w \leq 10 - 1 \)[/tex]
[tex]\[ w \leq 9 \][/tex]
So, the first constraint is [tex]\( w \leq 9 \)[/tex].
Step 2: Solve [tex]\( 21 + 2w \geq 62 \)[/tex]
First, isolate the term involving [tex]\( w \)[/tex]:
[tex]\[ 2w \geq 62 - 21 \][/tex]
[tex]\[ 2w \geq 41 \][/tex]
Next, solve for [tex]\( w \)[/tex] by dividing both sides by 2:
[tex]\[ w \geq \frac{41}{2} \][/tex]
[tex]\[ w \geq 20.5 \][/tex]
So, the second constraint is [tex]\( w \geq 20.5 \)[/tex].
Combining the Results:
We need [tex]\( w \leq 9 \)[/tex] and [tex]\( w \geq 20.5 \)[/tex] to hold simultaneously. However, examining these two inequalities shows that there are no values of [tex]\( w \)[/tex] that can simultaneously satisfy [tex]\( w \leq 9 \)[/tex] and [tex]\( w \geq 20.5 \)[/tex]. Hence, there is no range of [tex]\( w \)[/tex] values that satisfy both conditions together.
This inconsistency means that within the context of these constraints, there are no possible values for [tex]\( w \)[/tex] that can describe the width of the rectangular pool.
1. [tex]\( w \leq 10 - 1 \)[/tex]
2. [tex]\( 21 + 2w \geq 62 \)[/tex]
First, let's solve each inequality individually.
Step 1: Solve [tex]\( w \leq 10 - 1 \)[/tex]
[tex]\[ w \leq 9 \][/tex]
So, the first constraint is [tex]\( w \leq 9 \)[/tex].
Step 2: Solve [tex]\( 21 + 2w \geq 62 \)[/tex]
First, isolate the term involving [tex]\( w \)[/tex]:
[tex]\[ 2w \geq 62 - 21 \][/tex]
[tex]\[ 2w \geq 41 \][/tex]
Next, solve for [tex]\( w \)[/tex] by dividing both sides by 2:
[tex]\[ w \geq \frac{41}{2} \][/tex]
[tex]\[ w \geq 20.5 \][/tex]
So, the second constraint is [tex]\( w \geq 20.5 \)[/tex].
Combining the Results:
We need [tex]\( w \leq 9 \)[/tex] and [tex]\( w \geq 20.5 \)[/tex] to hold simultaneously. However, examining these two inequalities shows that there are no values of [tex]\( w \)[/tex] that can simultaneously satisfy [tex]\( w \leq 9 \)[/tex] and [tex]\( w \geq 20.5 \)[/tex]. Hence, there is no range of [tex]\( w \)[/tex] values that satisfy both conditions together.
This inconsistency means that within the context of these constraints, there are no possible values for [tex]\( w \)[/tex] that can describe the width of the rectangular pool.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.