Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To rewrite the expression [tex]\( 2 \sqrt[4]{x^7} \)[/tex] using rational exponents, follow these steps:
1. Recall that the fourth root of a number is equivalent to raising that number to the power of [tex]\(\frac{1}{4}\)[/tex]. In other words, [tex]\(\sqrt[4]{y} = y^{\frac{1}{4}}\)[/tex].
2. Apply this property to the expression inside the fourth root. Here, [tex]\( \sqrt[4]{x^7} \)[/tex] means [tex]\( (x^7)^{\frac{1}{4}} \)[/tex].
3. Use the property of exponents [tex]\((a^m)^n = a^{m \cdot n}\)[/tex] to combine the exponents. For [tex]\( (x^7)^{\frac{1}{4}} \)[/tex], you multiply the exponents [tex]\( 7 \)[/tex] and [tex]\( \frac{1}{4} \)[/tex]:
[tex]\[ (x^7)^{\frac{1}{4}} = x^{7 \cdot \frac{1}{4}} = x^{\frac{7}{4}} \][/tex]
4. Now, rewrite the original expression [tex]\( 2 \sqrt[4]{x^7} \)[/tex] using the result from step 3:
[tex]\[ 2 \sqrt[4]{x^7} = 2 \cdot x^{\frac{7}{4}} \][/tex]
Therefore, the expression [tex]\( 2 \sqrt[4]{x^7} \)[/tex] rewritten using rational exponents is:
[tex]\[ 2x^{\frac{7}{4}} \][/tex]
1. Recall that the fourth root of a number is equivalent to raising that number to the power of [tex]\(\frac{1}{4}\)[/tex]. In other words, [tex]\(\sqrt[4]{y} = y^{\frac{1}{4}}\)[/tex].
2. Apply this property to the expression inside the fourth root. Here, [tex]\( \sqrt[4]{x^7} \)[/tex] means [tex]\( (x^7)^{\frac{1}{4}} \)[/tex].
3. Use the property of exponents [tex]\((a^m)^n = a^{m \cdot n}\)[/tex] to combine the exponents. For [tex]\( (x^7)^{\frac{1}{4}} \)[/tex], you multiply the exponents [tex]\( 7 \)[/tex] and [tex]\( \frac{1}{4} \)[/tex]:
[tex]\[ (x^7)^{\frac{1}{4}} = x^{7 \cdot \frac{1}{4}} = x^{\frac{7}{4}} \][/tex]
4. Now, rewrite the original expression [tex]\( 2 \sqrt[4]{x^7} \)[/tex] using the result from step 3:
[tex]\[ 2 \sqrt[4]{x^7} = 2 \cdot x^{\frac{7}{4}} \][/tex]
Therefore, the expression [tex]\( 2 \sqrt[4]{x^7} \)[/tex] rewritten using rational exponents is:
[tex]\[ 2x^{\frac{7}{4}} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.