Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the domain and range of the function [tex]\( f(x) = \left(\frac{1}{5}\right)^x \)[/tex], let's analyze the characteristics of exponential functions, particularly those of the form [tex]\( a^x \)[/tex] where [tex]\( 0 < a < 1 \)[/tex].
### Domain
The domain of a function refers to all possible input values (x-values) that the function can accept. In general, exponential functions [tex]\( a^x \)[/tex] are defined for all real numbers [tex]\( x \)[/tex]. This means that there are no restrictions on the values that [tex]\( x \)[/tex] can take.
So, for [tex]\( f(x) = \left(\frac{1}{5}\right)^x \)[/tex], the domain is:
All real numbers.
### Range
The range of a function refers to all possible output values (y-values) that the function can produce. Exponential functions of the form [tex]\( a^x \)[/tex] where [tex]\( 0 < a < 1 \)[/tex] have certain properties:
- As [tex]\( x \)[/tex] approaches positive infinity ([tex]\( x \to +\infty \)[/tex]), [tex]\( \left(\frac{1}{5}\right)^x \)[/tex] gets closer and closer to zero but never actually reaches zero.
- As [tex]\( x \)[/tex] approaches negative infinity ([tex]\( x \to -\infty \)[/tex]), [tex]\( \left(\frac{1}{5}\right)^x \)[/tex] grows larger and larger without bound.
Since the function never actually reaches zero and always produces a positive value for any real [tex]\( x \)[/tex], the range is:
All real numbers greater than zero.
### Conclusion
Based on the characteristics of the exponential function [tex]\( f(x) = \left(\frac{1}{5}\right)^x \)[/tex], the correct statement regarding the domain and range is:
- The domain is all real numbers.
- The range is all real numbers greater than zero.
Thus, the correct choice is:
The domain is all real numbers. The range is all real numbers greater than zero.
### Domain
The domain of a function refers to all possible input values (x-values) that the function can accept. In general, exponential functions [tex]\( a^x \)[/tex] are defined for all real numbers [tex]\( x \)[/tex]. This means that there are no restrictions on the values that [tex]\( x \)[/tex] can take.
So, for [tex]\( f(x) = \left(\frac{1}{5}\right)^x \)[/tex], the domain is:
All real numbers.
### Range
The range of a function refers to all possible output values (y-values) that the function can produce. Exponential functions of the form [tex]\( a^x \)[/tex] where [tex]\( 0 < a < 1 \)[/tex] have certain properties:
- As [tex]\( x \)[/tex] approaches positive infinity ([tex]\( x \to +\infty \)[/tex]), [tex]\( \left(\frac{1}{5}\right)^x \)[/tex] gets closer and closer to zero but never actually reaches zero.
- As [tex]\( x \)[/tex] approaches negative infinity ([tex]\( x \to -\infty \)[/tex]), [tex]\( \left(\frac{1}{5}\right)^x \)[/tex] grows larger and larger without bound.
Since the function never actually reaches zero and always produces a positive value for any real [tex]\( x \)[/tex], the range is:
All real numbers greater than zero.
### Conclusion
Based on the characteristics of the exponential function [tex]\( f(x) = \left(\frac{1}{5}\right)^x \)[/tex], the correct statement regarding the domain and range is:
- The domain is all real numbers.
- The range is all real numbers greater than zero.
Thus, the correct choice is:
The domain is all real numbers. The range is all real numbers greater than zero.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.