Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To rewrite the absolute value function [tex]\( f(x) = |x+3| \)[/tex] as a piecewise function, you need to consider the behavior of the absolute value expression based on the value of [tex]\( x \)[/tex]. The absolute value function can be expressed as a piecewise function considering two cases:
1. When the expression inside the absolute value is non-negative, i.e., [tex]\( x + 3 \geq 0 \Rightarrow x \geq -3 \)[/tex].
2. When the expression inside the absolute value is negative, i.e., [tex]\( x + 3 < 0 \Rightarrow x < -3 \)[/tex].
For [tex]\( x \geq -3 \)[/tex], the absolute value function returns the expression itself:
[tex]\[ f(x) = x + 3 \][/tex]
For [tex]\( x < -3 \)[/tex], the absolute value function returns the negation of the expression:
[tex]\[ f(x) = -(x + 3) = -x - 3 \][/tex]
Putting it together, the piecewise function is:
[tex]\[ f(x) = \begin{cases} x + 3 & \text{if } x \geq -3 \\ -x - 3 & \text{if } x < -3 \end{cases} \][/tex]
So, the correct arrangement of the pieces is:
[tex]\[ f(x) = \begin{cases} x + 3 & \text{if } x \geq -3 \\ -x - 3 & \text{if } x < -3 \end{cases} \][/tex]
1. When the expression inside the absolute value is non-negative, i.e., [tex]\( x + 3 \geq 0 \Rightarrow x \geq -3 \)[/tex].
2. When the expression inside the absolute value is negative, i.e., [tex]\( x + 3 < 0 \Rightarrow x < -3 \)[/tex].
For [tex]\( x \geq -3 \)[/tex], the absolute value function returns the expression itself:
[tex]\[ f(x) = x + 3 \][/tex]
For [tex]\( x < -3 \)[/tex], the absolute value function returns the negation of the expression:
[tex]\[ f(x) = -(x + 3) = -x - 3 \][/tex]
Putting it together, the piecewise function is:
[tex]\[ f(x) = \begin{cases} x + 3 & \text{if } x \geq -3 \\ -x - 3 & \text{if } x < -3 \end{cases} \][/tex]
So, the correct arrangement of the pieces is:
[tex]\[ f(x) = \begin{cases} x + 3 & \text{if } x \geq -3 \\ -x - 3 & \text{if } x < -3 \end{cases} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.