At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure, let's go through the question step-by-step to find [tex]\((A \cup B) \cup C\)[/tex].
1. Define the sets:
- [tex]\(A = \{1, 2, 3, 4, 5, 6, 7, 8\}\)[/tex]
- [tex]\(B = \{2, 4, 8, 10, 12, 14\}\)[/tex]
- [tex]\(C = \{5, 7, 9, 11, 13, 15\}\)[/tex]
2. First, find the union of sets [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
The union of two sets includes all the elements from both sets, without duplicates.
[tex]\[ A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8\} \cup \{2, 4, 8, 10, 12, 14\} \][/tex]
Since the union contains all unique elements from both sets:
[tex]\[ A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14\} \][/tex]
3. Next, find the union of [tex]\((A \cup B)\)[/tex] and [tex]\(C\)[/tex]:
Similarly, the union of [tex]\((A \cup B)\)[/tex] and [tex]\(C\)[/tex] will include all unique elements from both [tex]\((A \cup B)\)[/tex] and [tex]\(C\)[/tex].
[tex]\[ (A \cup B) \cup C = \{1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14\} \cup \{5, 7, 9, 11, 13, 15\} \][/tex]
Including all unique elements:
[tex]\[ (A \cup B) \cup C = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\} \][/tex]
4. Final results:
- [tex]\(\mathbf{A \cup B}\)[/tex] results in [tex]\(\{1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14\}\)[/tex]
- [tex]\(\mathbf{(A \cup B) \cup C}\)[/tex] results in [tex]\(\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\}\)[/tex]
Therefore, the final answer for [tex]\((A \cup B) \cup C\)[/tex] is:
[tex]\[ \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\} \][/tex]
1. Define the sets:
- [tex]\(A = \{1, 2, 3, 4, 5, 6, 7, 8\}\)[/tex]
- [tex]\(B = \{2, 4, 8, 10, 12, 14\}\)[/tex]
- [tex]\(C = \{5, 7, 9, 11, 13, 15\}\)[/tex]
2. First, find the union of sets [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
The union of two sets includes all the elements from both sets, without duplicates.
[tex]\[ A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8\} \cup \{2, 4, 8, 10, 12, 14\} \][/tex]
Since the union contains all unique elements from both sets:
[tex]\[ A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14\} \][/tex]
3. Next, find the union of [tex]\((A \cup B)\)[/tex] and [tex]\(C\)[/tex]:
Similarly, the union of [tex]\((A \cup B)\)[/tex] and [tex]\(C\)[/tex] will include all unique elements from both [tex]\((A \cup B)\)[/tex] and [tex]\(C\)[/tex].
[tex]\[ (A \cup B) \cup C = \{1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14\} \cup \{5, 7, 9, 11, 13, 15\} \][/tex]
Including all unique elements:
[tex]\[ (A \cup B) \cup C = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\} \][/tex]
4. Final results:
- [tex]\(\mathbf{A \cup B}\)[/tex] results in [tex]\(\{1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14\}\)[/tex]
- [tex]\(\mathbf{(A \cup B) \cup C}\)[/tex] results in [tex]\(\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\}\)[/tex]
Therefore, the final answer for [tex]\((A \cup B) \cup C\)[/tex] is:
[tex]\[ \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.