Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the equation of the line in point-slope form using the given point [tex]\((-2, -6)\)[/tex], we follow several steps:
1. Identify points to use:
We will use the points [tex]\((-4, -11)\)[/tex] and [tex]\((-2, -6)\)[/tex] to calculate the slope [tex]\(m\)[/tex].
2. Calculate the slope [tex]\(m\)[/tex]:
The formula for the slope [tex]\(m\)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plug in the given points:
[tex]\[ m = \frac{-6 - (-11)}{-2 - (-4)} = \frac{-6 + 11}{-2 + 4} = \frac{5}{2} \][/tex]
3. Write the point-slope form:
The point-slope form of a linear equation is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Using the point [tex]\((-2, -6)\)[/tex] [tex]\((x_1, y_1)\)[/tex] and the calculated slope [tex]\(m = \frac{5}{2}\)[/tex]:
[tex]\[ y - (-6) = \frac{5}{2}(x - (-2)) \][/tex]
Simplify the expression:
[tex]\[ y + 6 = \frac{5}{2}(x + 2) \][/tex]
4. Compare with given options:
- [tex]\(y - 6 = \frac{5}{2}(x - 2)\)[/tex]
- [tex]\(y - 6 = \frac{2}{5}(x - 2)\)[/tex]
- [tex]\(y + 8 = \frac{2}{5}(x + 2)\)[/tex]
Clearly, [tex]\(y + 6 = \frac{5}{2}(x + 2)\)[/tex] matches our derived equation.
Thus, the correct equation is:
[tex]\[ y + 6 = \frac{5}{2}(x + 2) \][/tex]
1. Identify points to use:
We will use the points [tex]\((-4, -11)\)[/tex] and [tex]\((-2, -6)\)[/tex] to calculate the slope [tex]\(m\)[/tex].
2. Calculate the slope [tex]\(m\)[/tex]:
The formula for the slope [tex]\(m\)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plug in the given points:
[tex]\[ m = \frac{-6 - (-11)}{-2 - (-4)} = \frac{-6 + 11}{-2 + 4} = \frac{5}{2} \][/tex]
3. Write the point-slope form:
The point-slope form of a linear equation is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Using the point [tex]\((-2, -6)\)[/tex] [tex]\((x_1, y_1)\)[/tex] and the calculated slope [tex]\(m = \frac{5}{2}\)[/tex]:
[tex]\[ y - (-6) = \frac{5}{2}(x - (-2)) \][/tex]
Simplify the expression:
[tex]\[ y + 6 = \frac{5}{2}(x + 2) \][/tex]
4. Compare with given options:
- [tex]\(y - 6 = \frac{5}{2}(x - 2)\)[/tex]
- [tex]\(y - 6 = \frac{2}{5}(x - 2)\)[/tex]
- [tex]\(y + 8 = \frac{2}{5}(x + 2)\)[/tex]
Clearly, [tex]\(y + 6 = \frac{5}{2}(x + 2)\)[/tex] matches our derived equation.
Thus, the correct equation is:
[tex]\[ y + 6 = \frac{5}{2}(x + 2) \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.