Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the correct function that represents the graph of the given parabola, we need to follow a series of steps.
1. Understanding the Vertex Form of a Parabola:
Since the vertex of the parabola is given at [tex]\((3, 1)\)[/tex] and the focus is given at [tex]\((3, 5)\)[/tex], this parabola opens vertically. The general form of a vertically oriented parabolic function given the vertex [tex]\((h, k)\)[/tex] and the parameter [tex]\(p\)[/tex] (distance from the vertex to the focus) is:
[tex]$(x - h)^2 = 4p(y - k)$[/tex]
2. Identifying the Parameters:
- The vertex [tex]\((h, k) = (3, 1)\)[/tex]
- The focus [tex]\((3, 5)\)[/tex]
- Since the focus is at [tex]\((3, 5)\)[/tex] and the vertex is at [tex]\((3, 1)\)[/tex], the distance [tex]\(p\)[/tex] is calculated as:
[tex]$p = 5 - 1 = 4$[/tex]
3. Substituting Parameters into the Vertex Form:
Using the vertex form [tex]\((x - h)^2 = 4p(y - k)\)[/tex]:
[tex]$ (x - 3)^2 = 4 \cdot 4 (y - 1) $[/tex]
[tex]$ (x - 3)^2 = 16(y - 1) $[/tex]
4. Solving for [tex]\(y\)[/tex] to Get the Function [tex]\(f(x)\)[/tex]:
Isolate [tex]\(y\)[/tex] to express it in function form:
[tex]$ y - 1 = \frac{(x - 3)^2}{16} $[/tex]
Therefore:
[tex]$ y = \frac{(x - 3)^2}{16} + 1 $[/tex]
5. Converting to Function Form:
Therefore, the function in [tex]\(f(x)\)[/tex] form is:
[tex]$ f(x) = \frac{1}{16}(x - 3)^2 + 1 $[/tex]
Thus, the correct answer is:
D. [tex]\( f(x) = \frac{1}{16}(x - 3)^2 + 1 \)[/tex]
1. Understanding the Vertex Form of a Parabola:
Since the vertex of the parabola is given at [tex]\((3, 1)\)[/tex] and the focus is given at [tex]\((3, 5)\)[/tex], this parabola opens vertically. The general form of a vertically oriented parabolic function given the vertex [tex]\((h, k)\)[/tex] and the parameter [tex]\(p\)[/tex] (distance from the vertex to the focus) is:
[tex]$(x - h)^2 = 4p(y - k)$[/tex]
2. Identifying the Parameters:
- The vertex [tex]\((h, k) = (3, 1)\)[/tex]
- The focus [tex]\((3, 5)\)[/tex]
- Since the focus is at [tex]\((3, 5)\)[/tex] and the vertex is at [tex]\((3, 1)\)[/tex], the distance [tex]\(p\)[/tex] is calculated as:
[tex]$p = 5 - 1 = 4$[/tex]
3. Substituting Parameters into the Vertex Form:
Using the vertex form [tex]\((x - h)^2 = 4p(y - k)\)[/tex]:
[tex]$ (x - 3)^2 = 4 \cdot 4 (y - 1) $[/tex]
[tex]$ (x - 3)^2 = 16(y - 1) $[/tex]
4. Solving for [tex]\(y\)[/tex] to Get the Function [tex]\(f(x)\)[/tex]:
Isolate [tex]\(y\)[/tex] to express it in function form:
[tex]$ y - 1 = \frac{(x - 3)^2}{16} $[/tex]
Therefore:
[tex]$ y = \frac{(x - 3)^2}{16} + 1 $[/tex]
5. Converting to Function Form:
Therefore, the function in [tex]\(f(x)\)[/tex] form is:
[tex]$ f(x) = \frac{1}{16}(x - 3)^2 + 1 $[/tex]
Thus, the correct answer is:
D. [tex]\( f(x) = \frac{1}{16}(x - 3)^2 + 1 \)[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.