Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's solve the problem step by step, considering all given variables and using the provided equation for heat transfer, [tex]\( q = m C \Delta T \)[/tex].
1. Given Information:
- Mass of the calorimeter, [tex]\( m = 1.00 \, \text{kg} \)[/tex]
- Specific heat capacity of the calorimeter, [tex]\( C = 1.50 \, \text{J/(g°C)} \)[/tex]
- Initial temperature, [tex]\( T_{i} = 21.0 \, \text{°C} \)[/tex]
- Final temperature, [tex]\( T_{f} = 41.0 \, \text{°C} \)[/tex]
2. Convert the mass to grams:
[tex]\[ m = 1.00 \, \text{kg} \times 1000 \, \text{g/kg} = 1000 \, \text{g} \][/tex]
3. Calculate the temperature change [tex]\( \Delta T \)[/tex]:
[tex]\[ \Delta T = T_{f} - T_{i} = 41.0 \, \text{°C} - 21.0 \, \text{°C} = 20.0 \, \text{°C} \][/tex]
4. Calculate the heat released [tex]\( q \)[/tex]:
[tex]\[ q = m C \Delta T \][/tex]
[tex]\[ q = 1000 \, \text{g} \times 1.50 \, \text{J/(g°C)} \times 20.0 \, \text{°C} \][/tex]
[tex]\[ q = 1000 \times 1.50 \times 20.0 \, \text{J} \][/tex]
[tex]\[ q = 30000.0 \, \text{J} \][/tex]
5. Convert the heat released to kilojoules (kJ):
[tex]\[ q = \frac{30000.0 \, \text{J}}{1000} = 30.0 \, \text{kJ} \][/tex]
Thus, the amount of heat released during the combustion of the octane sample is [tex]\( \boxed{30.0 \, \text{kJ}} \)[/tex].
1. Given Information:
- Mass of the calorimeter, [tex]\( m = 1.00 \, \text{kg} \)[/tex]
- Specific heat capacity of the calorimeter, [tex]\( C = 1.50 \, \text{J/(g°C)} \)[/tex]
- Initial temperature, [tex]\( T_{i} = 21.0 \, \text{°C} \)[/tex]
- Final temperature, [tex]\( T_{f} = 41.0 \, \text{°C} \)[/tex]
2. Convert the mass to grams:
[tex]\[ m = 1.00 \, \text{kg} \times 1000 \, \text{g/kg} = 1000 \, \text{g} \][/tex]
3. Calculate the temperature change [tex]\( \Delta T \)[/tex]:
[tex]\[ \Delta T = T_{f} - T_{i} = 41.0 \, \text{°C} - 21.0 \, \text{°C} = 20.0 \, \text{°C} \][/tex]
4. Calculate the heat released [tex]\( q \)[/tex]:
[tex]\[ q = m C \Delta T \][/tex]
[tex]\[ q = 1000 \, \text{g} \times 1.50 \, \text{J/(g°C)} \times 20.0 \, \text{°C} \][/tex]
[tex]\[ q = 1000 \times 1.50 \times 20.0 \, \text{J} \][/tex]
[tex]\[ q = 30000.0 \, \text{J} \][/tex]
5. Convert the heat released to kilojoules (kJ):
[tex]\[ q = \frac{30000.0 \, \text{J}}{1000} = 30.0 \, \text{kJ} \][/tex]
Thus, the amount of heat released during the combustion of the octane sample is [tex]\( \boxed{30.0 \, \text{kJ}} \)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.