Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To express [tex]\(\sqrt{-225}\)[/tex] in its simplest terms, we need to consider the properties of square roots and imaginary numbers.
1. Understand the square root of a negative number: The square root of a negative number involves the imaginary unit [tex]\(i\)[/tex], where [tex]\(i\)[/tex] is defined as [tex]\(\sqrt{-1}\)[/tex]. Therefore, for any negative number [tex]\(-a\)[/tex], [tex]\(\sqrt{-a} = \sqrt{a} \cdot \sqrt{-1}\)[/tex].
2. Break down [tex]\(\sqrt{-225}\)[/tex]:
- Start by noting that [tex]\(-225\)[/tex] can be written as [tex]\(225 \times -1\)[/tex].
- Thus, [tex]\(\sqrt{-225} = \sqrt{225 \times -1}\)[/tex].
3. Separate the product inside the square root:
- This can be split into the product of two square roots: [tex]\(\sqrt{225} \)[/tex] and [tex]\(\sqrt{-1}\)[/tex].
- So, [tex]\(\sqrt{225 \times -1} = \sqrt{225} \times \sqrt{-1}\)[/tex].
4. Evaluate each square root individually:
- First, find [tex]\(\sqrt{225}\)[/tex]. Since [tex]\(225 = 15^2\)[/tex], we have [tex]\(\sqrt{225} = 15\)[/tex].
- Next, recall that [tex]\(\sqrt{-1} = i\)[/tex].
5. Combine the results:
- Multiplying these results together gives [tex]\(\sqrt{-225} = 15 \times i\)[/tex].
Thus, the simplest term for [tex]\(\sqrt{-225}\)[/tex] is [tex]\(\boxed{15i}\)[/tex].
1. Understand the square root of a negative number: The square root of a negative number involves the imaginary unit [tex]\(i\)[/tex], where [tex]\(i\)[/tex] is defined as [tex]\(\sqrt{-1}\)[/tex]. Therefore, for any negative number [tex]\(-a\)[/tex], [tex]\(\sqrt{-a} = \sqrt{a} \cdot \sqrt{-1}\)[/tex].
2. Break down [tex]\(\sqrt{-225}\)[/tex]:
- Start by noting that [tex]\(-225\)[/tex] can be written as [tex]\(225 \times -1\)[/tex].
- Thus, [tex]\(\sqrt{-225} = \sqrt{225 \times -1}\)[/tex].
3. Separate the product inside the square root:
- This can be split into the product of two square roots: [tex]\(\sqrt{225} \)[/tex] and [tex]\(\sqrt{-1}\)[/tex].
- So, [tex]\(\sqrt{225 \times -1} = \sqrt{225} \times \sqrt{-1}\)[/tex].
4. Evaluate each square root individually:
- First, find [tex]\(\sqrt{225}\)[/tex]. Since [tex]\(225 = 15^2\)[/tex], we have [tex]\(\sqrt{225} = 15\)[/tex].
- Next, recall that [tex]\(\sqrt{-1} = i\)[/tex].
5. Combine the results:
- Multiplying these results together gives [tex]\(\sqrt{-225} = 15 \times i\)[/tex].
Thus, the simplest term for [tex]\(\sqrt{-225}\)[/tex] is [tex]\(\boxed{15i}\)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.