Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To express [tex]\(\sqrt{-225}\)[/tex] in its simplest terms, we need to consider the properties of square roots and imaginary numbers.
1. Understand the square root of a negative number: The square root of a negative number involves the imaginary unit [tex]\(i\)[/tex], where [tex]\(i\)[/tex] is defined as [tex]\(\sqrt{-1}\)[/tex]. Therefore, for any negative number [tex]\(-a\)[/tex], [tex]\(\sqrt{-a} = \sqrt{a} \cdot \sqrt{-1}\)[/tex].
2. Break down [tex]\(\sqrt{-225}\)[/tex]:
- Start by noting that [tex]\(-225\)[/tex] can be written as [tex]\(225 \times -1\)[/tex].
- Thus, [tex]\(\sqrt{-225} = \sqrt{225 \times -1}\)[/tex].
3. Separate the product inside the square root:
- This can be split into the product of two square roots: [tex]\(\sqrt{225} \)[/tex] and [tex]\(\sqrt{-1}\)[/tex].
- So, [tex]\(\sqrt{225 \times -1} = \sqrt{225} \times \sqrt{-1}\)[/tex].
4. Evaluate each square root individually:
- First, find [tex]\(\sqrt{225}\)[/tex]. Since [tex]\(225 = 15^2\)[/tex], we have [tex]\(\sqrt{225} = 15\)[/tex].
- Next, recall that [tex]\(\sqrt{-1} = i\)[/tex].
5. Combine the results:
- Multiplying these results together gives [tex]\(\sqrt{-225} = 15 \times i\)[/tex].
Thus, the simplest term for [tex]\(\sqrt{-225}\)[/tex] is [tex]\(\boxed{15i}\)[/tex].
1. Understand the square root of a negative number: The square root of a negative number involves the imaginary unit [tex]\(i\)[/tex], where [tex]\(i\)[/tex] is defined as [tex]\(\sqrt{-1}\)[/tex]. Therefore, for any negative number [tex]\(-a\)[/tex], [tex]\(\sqrt{-a} = \sqrt{a} \cdot \sqrt{-1}\)[/tex].
2. Break down [tex]\(\sqrt{-225}\)[/tex]:
- Start by noting that [tex]\(-225\)[/tex] can be written as [tex]\(225 \times -1\)[/tex].
- Thus, [tex]\(\sqrt{-225} = \sqrt{225 \times -1}\)[/tex].
3. Separate the product inside the square root:
- This can be split into the product of two square roots: [tex]\(\sqrt{225} \)[/tex] and [tex]\(\sqrt{-1}\)[/tex].
- So, [tex]\(\sqrt{225 \times -1} = \sqrt{225} \times \sqrt{-1}\)[/tex].
4. Evaluate each square root individually:
- First, find [tex]\(\sqrt{225}\)[/tex]. Since [tex]\(225 = 15^2\)[/tex], we have [tex]\(\sqrt{225} = 15\)[/tex].
- Next, recall that [tex]\(\sqrt{-1} = i\)[/tex].
5. Combine the results:
- Multiplying these results together gives [tex]\(\sqrt{-225} = 15 \times i\)[/tex].
Thus, the simplest term for [tex]\(\sqrt{-225}\)[/tex] is [tex]\(\boxed{15i}\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.