Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's solve this step-by-step to determine whether an isosceles right triangle is always a [tex]$45^\circ$[/tex]-[tex]$45^\circ$[/tex]-[tex]$90^\circ$[/tex] triangle.
1. Definition of an Isosceles Triangle:
- An isosceles triangle has two sides that are of equal length.
- The angles opposite these equal sides are also equal.
2. Definition of a Right Triangle:
- A right triangle has one angle that is [tex]$90^\circ$[/tex].
3. Combining Both Definitions:
- An isosceles right triangle has both properties:
- It has one angle of [tex]$90^\circ$[/tex].
- The two other angles must be equal and sum up with the [tex]$90^\circ$[/tex] angle to [tex]$180^\circ$[/tex] (since the sum of all angles in a triangle is [tex]$180^\circ$[/tex]).
4. Calculating the Angles:
- Let the two equal angles each be [tex]$x$[/tex].
- Therefore, the equation is:
[tex]\[ x + x + 90^\circ = 180^\circ \][/tex]
- Simplifying this:
[tex]\[ 2x = 90^\circ \][/tex]
[tex]\[ x = 45^\circ \][/tex]
5. Conclusion:
- Therefore, if a triangle is an isosceles right triangle, the remaining two angles must both be [tex]$45^\circ$[/tex].
- Thus, an isosceles right triangle is always a [tex]$45^\circ$[/tex]-[tex]$45^\circ$[/tex]-[tex]$90^\circ$[/tex] triangle.
Hence, the statement is:
A. True
1. Definition of an Isosceles Triangle:
- An isosceles triangle has two sides that are of equal length.
- The angles opposite these equal sides are also equal.
2. Definition of a Right Triangle:
- A right triangle has one angle that is [tex]$90^\circ$[/tex].
3. Combining Both Definitions:
- An isosceles right triangle has both properties:
- It has one angle of [tex]$90^\circ$[/tex].
- The two other angles must be equal and sum up with the [tex]$90^\circ$[/tex] angle to [tex]$180^\circ$[/tex] (since the sum of all angles in a triangle is [tex]$180^\circ$[/tex]).
4. Calculating the Angles:
- Let the two equal angles each be [tex]$x$[/tex].
- Therefore, the equation is:
[tex]\[ x + x + 90^\circ = 180^\circ \][/tex]
- Simplifying this:
[tex]\[ 2x = 90^\circ \][/tex]
[tex]\[ x = 45^\circ \][/tex]
5. Conclusion:
- Therefore, if a triangle is an isosceles right triangle, the remaining two angles must both be [tex]$45^\circ$[/tex].
- Thus, an isosceles right triangle is always a [tex]$45^\circ$[/tex]-[tex]$45^\circ$[/tex]-[tex]$90^\circ$[/tex] triangle.
Hence, the statement is:
A. True
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.