Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

How would you describe the relationship between the real zero(s) and the [tex]$x$[/tex]-intercept(s) of the function

[tex]\[ f(x) = \frac{3x(x-1)}{x^2(x+3)(x+1)} \][/tex]

A. When you set the function equal to zero, the solution is [tex]$x = 1$[/tex]; therefore, the graph has an [tex]$x$[/tex]-intercept of [tex]$(1, 0)$[/tex].

B. When you set the function equal to zero, the solutions are [tex]$x = 0$[/tex] or [tex]$x = 1$[/tex]; therefore, the graph has [tex]$x$[/tex]-intercepts at [tex]$(0, 0)$[/tex] and [tex]$(1, 0)$[/tex].

C. When you substitute [tex]$x = 0$[/tex] into the function, there is no solution; therefore, the graph will not have any [tex]$x$[/tex]-intercepts.

D. Since there are asymptotes at [tex]$x = -3$[/tex], [tex]$x = -1$[/tex], and [tex]$x = 0$[/tex], the graph has no [tex]$x$[/tex]-intercepts and, therefore, no real zeros.

Sagot :

To understand the relationship between the real zero(s) and [tex]\( x \)[/tex]-intercept(s) of the function [tex]\( f(x) = \frac{3x(x-1)}{x^2(x+3)(x+1)} \)[/tex], we need to analyze the numerator and denominator separately.

1. Finding the Real Zeros:
To find the real zeros (or roots) of the function, we need to set the numerator equal to zero:
[tex]\[ 3x(x - 1) = 0 \][/tex]

Solving this equation, we get:
[tex]\[ 3x = 0 \quad \text{or} \quad x - 1 = 0 \][/tex]
Which simplifies to:
[tex]\[ x = 0 \quad \text{or} \quad x = 1 \][/tex]

Therefore, the potential real zeros of the function are [tex]\( x = 0 \)[/tex] and [tex]\( x = 1 \)[/tex].

2. Identifying the Domain Restrictions:
Next, we need to identify any [tex]\( x \)[/tex]-values that make the denominator zero because these values will indicate vertical asymptotes and are not in the domain of the function:
[tex]\[ x^2(x + 3)(x + 1) = 0 \][/tex]
This equation simplifies to the factors:
[tex]\[ x^2 = 0 \quad \text{or} \quad x + 3 = 0 \quad \text{or} \quad x + 1 = 0 \][/tex]
Which gives us:
[tex]\[ x = 0 \quad \text{or} \quad x = -3 \quad \text{or} \quad x = -1 \][/tex]

Therefore, there are vertical asymptotes at [tex]\( x = 0 \)[/tex], [tex]\( x = -3 \)[/tex], and [tex]\( x = -1 \)[/tex].

3. Validating the Zeros:
Since zeros of the function cannot coincide with the vertical asymptotes, we disregard [tex]\( x = 0 \)[/tex] because it makes the denominator zero. Hence, it is not a valid zero.

The only valid zero that remains is [tex]\( x = 1 \)[/tex].

4. Determining the [tex]\( x \)[/tex]-Intercepts:
The [tex]\( x \)[/tex]-intercepts of the function are the points where the graph crosses the [tex]\( x \)[/tex]-axis, which occur at the valid zeros of the function. For [tex]\( f(x) = \frac{3x(x - 1)}{x^2(x + 3)(x + 1)} \)[/tex], the only valid zero is [tex]\( x = 1 \)[/tex].

Therefore, the function has an [tex]\( x \)[/tex]-intercept at:
[tex]\[ (1, 0) \][/tex]

5. Summary:
- The real zero of the function is [tex]\( x = 1 \)[/tex].
- The corresponding [tex]\( x \)[/tex]-intercept is [tex]\( (1,0) \)[/tex].
- The vertical asymptotes of the function are at [tex]\( x = -3 \)[/tex], [tex]\( x = -1 \)[/tex], and [tex]\( x = 0 \)[/tex].
- There is no [tex]\( x \)[/tex]-intercept at [tex]\( x = 0 \)[/tex] or [tex]\( x = -3 \)[/tex].

Hence, the graph of the function [tex]\( f(x) = \frac{3x(x-1)}{x^2(x+3)(x+1)} \)[/tex] has one [tex]\( x \)[/tex]-intercept at [tex]\( (1,0) \)[/tex] and vertical asymptotes at [tex]\( x = -3 \)[/tex], [tex]\( x = -1 \)[/tex], and [tex]\( x = 0 \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.