Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

How would you describe the relationship between the real zero(s) and the [tex]$x$[/tex]-intercept(s) of the function

[tex]\[ f(x) = \frac{3x(x-1)}{x^2(x+3)(x+1)} \][/tex]

A. When you set the function equal to zero, the solution is [tex]$x = 1$[/tex]; therefore, the graph has an [tex]$x$[/tex]-intercept of [tex]$(1, 0)$[/tex].

B. When you set the function equal to zero, the solutions are [tex]$x = 0$[/tex] or [tex]$x = 1$[/tex]; therefore, the graph has [tex]$x$[/tex]-intercepts at [tex]$(0, 0)$[/tex] and [tex]$(1, 0)$[/tex].

C. When you substitute [tex]$x = 0$[/tex] into the function, there is no solution; therefore, the graph will not have any [tex]$x$[/tex]-intercepts.

D. Since there are asymptotes at [tex]$x = -3$[/tex], [tex]$x = -1$[/tex], and [tex]$x = 0$[/tex], the graph has no [tex]$x$[/tex]-intercepts and, therefore, no real zeros.


Sagot :

To understand the relationship between the real zero(s) and [tex]\( x \)[/tex]-intercept(s) of the function [tex]\( f(x) = \frac{3x(x-1)}{x^2(x+3)(x+1)} \)[/tex], we need to analyze the numerator and denominator separately.

1. Finding the Real Zeros:
To find the real zeros (or roots) of the function, we need to set the numerator equal to zero:
[tex]\[ 3x(x - 1) = 0 \][/tex]

Solving this equation, we get:
[tex]\[ 3x = 0 \quad \text{or} \quad x - 1 = 0 \][/tex]
Which simplifies to:
[tex]\[ x = 0 \quad \text{or} \quad x = 1 \][/tex]

Therefore, the potential real zeros of the function are [tex]\( x = 0 \)[/tex] and [tex]\( x = 1 \)[/tex].

2. Identifying the Domain Restrictions:
Next, we need to identify any [tex]\( x \)[/tex]-values that make the denominator zero because these values will indicate vertical asymptotes and are not in the domain of the function:
[tex]\[ x^2(x + 3)(x + 1) = 0 \][/tex]
This equation simplifies to the factors:
[tex]\[ x^2 = 0 \quad \text{or} \quad x + 3 = 0 \quad \text{or} \quad x + 1 = 0 \][/tex]
Which gives us:
[tex]\[ x = 0 \quad \text{or} \quad x = -3 \quad \text{or} \quad x = -1 \][/tex]

Therefore, there are vertical asymptotes at [tex]\( x = 0 \)[/tex], [tex]\( x = -3 \)[/tex], and [tex]\( x = -1 \)[/tex].

3. Validating the Zeros:
Since zeros of the function cannot coincide with the vertical asymptotes, we disregard [tex]\( x = 0 \)[/tex] because it makes the denominator zero. Hence, it is not a valid zero.

The only valid zero that remains is [tex]\( x = 1 \)[/tex].

4. Determining the [tex]\( x \)[/tex]-Intercepts:
The [tex]\( x \)[/tex]-intercepts of the function are the points where the graph crosses the [tex]\( x \)[/tex]-axis, which occur at the valid zeros of the function. For [tex]\( f(x) = \frac{3x(x - 1)}{x^2(x + 3)(x + 1)} \)[/tex], the only valid zero is [tex]\( x = 1 \)[/tex].

Therefore, the function has an [tex]\( x \)[/tex]-intercept at:
[tex]\[ (1, 0) \][/tex]

5. Summary:
- The real zero of the function is [tex]\( x = 1 \)[/tex].
- The corresponding [tex]\( x \)[/tex]-intercept is [tex]\( (1,0) \)[/tex].
- The vertical asymptotes of the function are at [tex]\( x = -3 \)[/tex], [tex]\( x = -1 \)[/tex], and [tex]\( x = 0 \)[/tex].
- There is no [tex]\( x \)[/tex]-intercept at [tex]\( x = 0 \)[/tex] or [tex]\( x = -3 \)[/tex].

Hence, the graph of the function [tex]\( f(x) = \frac{3x(x-1)}{x^2(x+3)(x+1)} \)[/tex] has one [tex]\( x \)[/tex]-intercept at [tex]\( (1,0) \)[/tex] and vertical asymptotes at [tex]\( x = -3 \)[/tex], [tex]\( x = -1 \)[/tex], and [tex]\( x = 0 \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.