Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's analyze each statement one-by-one to determine whether it is true or not.
1. Statement: If [tex]\(A \)[/tex] is a subset of [tex]\(S, A \)[/tex] could be [tex]\(\{0, 1, 2\}\)[/tex].
To be a subset of [tex]\(S = \{1, 2, 3, 4, 5, 6\}\)[/tex], every element in set [tex]\(A\)[/tex] must also be an element of set [tex]\(S\)[/tex]. The set [tex]\(\{0, 1, 2\}\)[/tex] includes the element 0, which is not in [tex]\(S\)[/tex].
Therefore, this statement is false.
2. Statement: If [tex]\(A\)[/tex] is a subset of [tex]\(S, A\)[/tex] could be [tex]\(\{5, 6\}\)[/tex].
To be a subset of [tex]\(S\)[/tex], every element in the set [tex]\(A\)[/tex] must also be an element of [tex]\(S\)[/tex]. The set [tex]\(\{5, 6\}\)[/tex] includes elements 5 and 6, both of which are in [tex]\(S\)[/tex].
Therefore, this statement is true.
3. Statement: If a subset [tex]\(A\)[/tex] represents the complement of rolling a 5, then [tex]\(A = \{1, 2, 3, 4, 6\}\)[/tex].
The complement of rolling a 5 means every possible outcome except rolling a 5. The set of all outcomes except 5 is [tex]\(\{1, 2, 3, 4, 6\}\)[/tex].
Therefore, this statement is true.
4. Statement: If a subset [tex]\(A\)[/tex] represents the complement of rolling an even number, then [tex]\(A = \{1, 3\}\)[/tex].
The even numbers in the set [tex]\(S = \{1, 2, 3, 4, 5, 6\}\)[/tex] are \{2, 4, 6\}. The complement of rolling an even number should include all outcomes that are not even numbers, thus it consists of the odd numbers. The odd numbers in the set are \{1, 3, 5\}.
Therefore, this statement is false.
To conclude, the statements that are true are:
- If [tex]\(A\)[/tex] is a subset of [tex]\(S\)[/tex], [tex]\(A\)[/tex] could be [tex]\(\{5, 6\}\)[/tex].
- If a subset [tex]\(A\)[/tex] represents the complement of rolling a 5, then [tex]\(A = \{1, 2, 3, 4, 6\}\)[/tex].
These are the steps and conclusions based on the analysis of each statement.
1. Statement: If [tex]\(A \)[/tex] is a subset of [tex]\(S, A \)[/tex] could be [tex]\(\{0, 1, 2\}\)[/tex].
To be a subset of [tex]\(S = \{1, 2, 3, 4, 5, 6\}\)[/tex], every element in set [tex]\(A\)[/tex] must also be an element of set [tex]\(S\)[/tex]. The set [tex]\(\{0, 1, 2\}\)[/tex] includes the element 0, which is not in [tex]\(S\)[/tex].
Therefore, this statement is false.
2. Statement: If [tex]\(A\)[/tex] is a subset of [tex]\(S, A\)[/tex] could be [tex]\(\{5, 6\}\)[/tex].
To be a subset of [tex]\(S\)[/tex], every element in the set [tex]\(A\)[/tex] must also be an element of [tex]\(S\)[/tex]. The set [tex]\(\{5, 6\}\)[/tex] includes elements 5 and 6, both of which are in [tex]\(S\)[/tex].
Therefore, this statement is true.
3. Statement: If a subset [tex]\(A\)[/tex] represents the complement of rolling a 5, then [tex]\(A = \{1, 2, 3, 4, 6\}\)[/tex].
The complement of rolling a 5 means every possible outcome except rolling a 5. The set of all outcomes except 5 is [tex]\(\{1, 2, 3, 4, 6\}\)[/tex].
Therefore, this statement is true.
4. Statement: If a subset [tex]\(A\)[/tex] represents the complement of rolling an even number, then [tex]\(A = \{1, 3\}\)[/tex].
The even numbers in the set [tex]\(S = \{1, 2, 3, 4, 5, 6\}\)[/tex] are \{2, 4, 6\}. The complement of rolling an even number should include all outcomes that are not even numbers, thus it consists of the odd numbers. The odd numbers in the set are \{1, 3, 5\}.
Therefore, this statement is false.
To conclude, the statements that are true are:
- If [tex]\(A\)[/tex] is a subset of [tex]\(S\)[/tex], [tex]\(A\)[/tex] could be [tex]\(\{5, 6\}\)[/tex].
- If a subset [tex]\(A\)[/tex] represents the complement of rolling a 5, then [tex]\(A = \{1, 2, 3, 4, 6\}\)[/tex].
These are the steps and conclusions based on the analysis of each statement.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.