At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure, let's match each logarithmic equation to its corresponding [tex]$x$[/tex]-value step by step.
1. [tex]\(\log_4 (x) = 2\)[/tex]:
- The base is 4, and the logarithm value is 2.
- This means [tex]\(4^2 = x\)[/tex].
- Therefore, [tex]\(x = 16\)[/tex].
2. [tex]\(\log_3 (x) = 1\)[/tex]:
- The base is 3, and the logarithm value is 1.
- This means [tex]\(3^1 = x\)[/tex].
- Therefore, [tex]\(x = 3\)[/tex].
3. [tex]\(\log_{10} (x) = 3\)[/tex]:
- The base is 10, and the logarithm value is 3.
- This means [tex]\(10^3 = x\)[/tex].
- Therefore, [tex]\(x = 1000\)[/tex].
4. [tex]\(\log_5 (x) = 4\)[/tex]:
- The base is 5, and the logarithm value is 4.
- This means [tex]\(5^4 = x\)[/tex].
- Therefore, [tex]\(x = 625\)[/tex].
5. [tex]\(\log_2 (x) = 5\)[/tex]:
- The base is 2, and the logarithm value is 5.
- This means [tex]\(2^5 = x\)[/tex].
- Therefore, [tex]\(x = 32\)[/tex].
Now let's form the correct pairs:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline 16 & \log_4 x = 2 & \log_3 x = 1 & 625 & \log_{10} x = 3 \\ \hline \log_5 x = 4 & 1000 & \log_2 x = 5 & 32 & \\ \hline \end{array} \][/tex]
Pairs:
- [tex]\(\log_4 x = 2 \rightarrow x = 16\)[/tex]
- [tex]\(\log_3 x = 1 \rightarrow x = 3\)[/tex]
- [tex]\(\log_{10} x = 3 \rightarrow x = 1000\)[/tex]
- [tex]\(\log_5 x = 4 \rightarrow x = 625\)[/tex]
- [tex]\(\log_2 x = 5 \rightarrow x = 32\)[/tex]
Therefore, the pairs are:
[tex]\[ \begin{array}{|c|c|c|} \hline \log_4 x = 2 & 16 \\ \log_3 x = 1 & 3 \\ \log_{10} x = 3 & 1000 \\ \log_5 x = 4 & 625 \\ \log_2 x = 5 & 32 \\ \hline \end{array} \][/tex]
1. [tex]\(\log_4 (x) = 2\)[/tex]:
- The base is 4, and the logarithm value is 2.
- This means [tex]\(4^2 = x\)[/tex].
- Therefore, [tex]\(x = 16\)[/tex].
2. [tex]\(\log_3 (x) = 1\)[/tex]:
- The base is 3, and the logarithm value is 1.
- This means [tex]\(3^1 = x\)[/tex].
- Therefore, [tex]\(x = 3\)[/tex].
3. [tex]\(\log_{10} (x) = 3\)[/tex]:
- The base is 10, and the logarithm value is 3.
- This means [tex]\(10^3 = x\)[/tex].
- Therefore, [tex]\(x = 1000\)[/tex].
4. [tex]\(\log_5 (x) = 4\)[/tex]:
- The base is 5, and the logarithm value is 4.
- This means [tex]\(5^4 = x\)[/tex].
- Therefore, [tex]\(x = 625\)[/tex].
5. [tex]\(\log_2 (x) = 5\)[/tex]:
- The base is 2, and the logarithm value is 5.
- This means [tex]\(2^5 = x\)[/tex].
- Therefore, [tex]\(x = 32\)[/tex].
Now let's form the correct pairs:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline 16 & \log_4 x = 2 & \log_3 x = 1 & 625 & \log_{10} x = 3 \\ \hline \log_5 x = 4 & 1000 & \log_2 x = 5 & 32 & \\ \hline \end{array} \][/tex]
Pairs:
- [tex]\(\log_4 x = 2 \rightarrow x = 16\)[/tex]
- [tex]\(\log_3 x = 1 \rightarrow x = 3\)[/tex]
- [tex]\(\log_{10} x = 3 \rightarrow x = 1000\)[/tex]
- [tex]\(\log_5 x = 4 \rightarrow x = 625\)[/tex]
- [tex]\(\log_2 x = 5 \rightarrow x = 32\)[/tex]
Therefore, the pairs are:
[tex]\[ \begin{array}{|c|c|c|} \hline \log_4 x = 2 & 16 \\ \log_3 x = 1 & 3 \\ \log_{10} x = 3 & 1000 \\ \log_5 x = 4 & 625 \\ \log_2 x = 5 & 32 \\ \hline \end{array} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.