Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure, let's match each logarithmic equation to its corresponding [tex]$x$[/tex]-value step by step.
1. [tex]\(\log_4 (x) = 2\)[/tex]:
- The base is 4, and the logarithm value is 2.
- This means [tex]\(4^2 = x\)[/tex].
- Therefore, [tex]\(x = 16\)[/tex].
2. [tex]\(\log_3 (x) = 1\)[/tex]:
- The base is 3, and the logarithm value is 1.
- This means [tex]\(3^1 = x\)[/tex].
- Therefore, [tex]\(x = 3\)[/tex].
3. [tex]\(\log_{10} (x) = 3\)[/tex]:
- The base is 10, and the logarithm value is 3.
- This means [tex]\(10^3 = x\)[/tex].
- Therefore, [tex]\(x = 1000\)[/tex].
4. [tex]\(\log_5 (x) = 4\)[/tex]:
- The base is 5, and the logarithm value is 4.
- This means [tex]\(5^4 = x\)[/tex].
- Therefore, [tex]\(x = 625\)[/tex].
5. [tex]\(\log_2 (x) = 5\)[/tex]:
- The base is 2, and the logarithm value is 5.
- This means [tex]\(2^5 = x\)[/tex].
- Therefore, [tex]\(x = 32\)[/tex].
Now let's form the correct pairs:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline 16 & \log_4 x = 2 & \log_3 x = 1 & 625 & \log_{10} x = 3 \\ \hline \log_5 x = 4 & 1000 & \log_2 x = 5 & 32 & \\ \hline \end{array} \][/tex]
Pairs:
- [tex]\(\log_4 x = 2 \rightarrow x = 16\)[/tex]
- [tex]\(\log_3 x = 1 \rightarrow x = 3\)[/tex]
- [tex]\(\log_{10} x = 3 \rightarrow x = 1000\)[/tex]
- [tex]\(\log_5 x = 4 \rightarrow x = 625\)[/tex]
- [tex]\(\log_2 x = 5 \rightarrow x = 32\)[/tex]
Therefore, the pairs are:
[tex]\[ \begin{array}{|c|c|c|} \hline \log_4 x = 2 & 16 \\ \log_3 x = 1 & 3 \\ \log_{10} x = 3 & 1000 \\ \log_5 x = 4 & 625 \\ \log_2 x = 5 & 32 \\ \hline \end{array} \][/tex]
1. [tex]\(\log_4 (x) = 2\)[/tex]:
- The base is 4, and the logarithm value is 2.
- This means [tex]\(4^2 = x\)[/tex].
- Therefore, [tex]\(x = 16\)[/tex].
2. [tex]\(\log_3 (x) = 1\)[/tex]:
- The base is 3, and the logarithm value is 1.
- This means [tex]\(3^1 = x\)[/tex].
- Therefore, [tex]\(x = 3\)[/tex].
3. [tex]\(\log_{10} (x) = 3\)[/tex]:
- The base is 10, and the logarithm value is 3.
- This means [tex]\(10^3 = x\)[/tex].
- Therefore, [tex]\(x = 1000\)[/tex].
4. [tex]\(\log_5 (x) = 4\)[/tex]:
- The base is 5, and the logarithm value is 4.
- This means [tex]\(5^4 = x\)[/tex].
- Therefore, [tex]\(x = 625\)[/tex].
5. [tex]\(\log_2 (x) = 5\)[/tex]:
- The base is 2, and the logarithm value is 5.
- This means [tex]\(2^5 = x\)[/tex].
- Therefore, [tex]\(x = 32\)[/tex].
Now let's form the correct pairs:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline 16 & \log_4 x = 2 & \log_3 x = 1 & 625 & \log_{10} x = 3 \\ \hline \log_5 x = 4 & 1000 & \log_2 x = 5 & 32 & \\ \hline \end{array} \][/tex]
Pairs:
- [tex]\(\log_4 x = 2 \rightarrow x = 16\)[/tex]
- [tex]\(\log_3 x = 1 \rightarrow x = 3\)[/tex]
- [tex]\(\log_{10} x = 3 \rightarrow x = 1000\)[/tex]
- [tex]\(\log_5 x = 4 \rightarrow x = 625\)[/tex]
- [tex]\(\log_2 x = 5 \rightarrow x = 32\)[/tex]
Therefore, the pairs are:
[tex]\[ \begin{array}{|c|c|c|} \hline \log_4 x = 2 & 16 \\ \log_3 x = 1 & 3 \\ \log_{10} x = 3 & 1000 \\ \log_5 x = 4 & 625 \\ \log_2 x = 5 & 32 \\ \hline \end{array} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.