Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's analyze the given functions and the statements one by one.
### Function [tex]\( f(x) \)[/tex]
Function [tex]\( f \)[/tex] is defined by the values given in the table:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 0 & 1 & 2 & 3 & 4 \\ \hline f(x) & -12 & -4 & 0 & 2 & 3 \\ \hline \end{array} \][/tex]
### Function [tex]\( g(x) \)[/tex]
Function [tex]\( g \)[/tex] is given by the equation:
[tex]\[ g(x) = -12 \left( \frac{1}{3} \right)^x \][/tex]
### Analyzing Statements
1. The functions have the same [tex]\( y \)[/tex]-intercept.
The [tex]\( y \)[/tex]-intercept occurs when [tex]\( x = 0 \)[/tex].
For [tex]\( f(x) \)[/tex]:
[tex]\[ f(0) = -12 \][/tex]
For [tex]\( g(x) \)[/tex]:
[tex]\[ g(0) = -12 \left( \frac{1}{3} \right)^0 = -12 \][/tex]
Both functions have [tex]\( y \)[/tex]-intercept at [tex]\( (0, -12) \)[/tex]. Therefore, this statement is true.
2. The functions have the same [tex]\( x \)[/tex]-intercept.
The [tex]\( x \)[/tex]-intercept occurs when the function value is 0.
For [tex]\( f(x) \)[/tex]:
From the table, [tex]\( f(2) = 0 \)[/tex]. Therefore, the [tex]\( x \)[/tex]-intercept for [tex]\( f(x) \)[/tex] is [tex]\( x = 2 \)[/tex].
For [tex]\( g(x) \)[/tex]:
[tex]\[ -12 \left( \frac{1}{3} \right)^x = 0 \][/tex]
This equation does not have any real solution because [tex]\( -12 \left( \frac{1}{3} \right)^x \)[/tex] never equals 0 for any real [tex]\( x \)[/tex]. Therefore, [tex]\( g(x) \)[/tex] has no [tex]\( x \)[/tex]-intercept.
Hence, this statement is false.
3. Both functions approach the same value as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex].
As [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex] for [tex]\( f(x) \)[/tex], the function values seem to increase slowly based on the table. For [tex]\( g(x) \)[/tex]:
[tex]\[ \lim_{x \to \infty} g(x) = \lim_{x \to \infty} -12 \left( \frac{1}{3} \right)^x = 0 \][/tex]
Since function [tex]\( f(x) \)[/tex] does not converge to 0 based on the provided values, this statement is false.
4. Both functions are increasing on all intervals of [tex]\( x \)[/tex].
For [tex]\( f(x) \)[/tex], the table values show:
- [tex]\( f(0) = -12 \)[/tex] to [tex]\( f(1) = -4 \)[/tex] (increasing)
- [tex]\( f(1) = -4 \)[/tex] to [tex]\( f(2) = 0 \)[/tex] (increasing)
- [tex]\( f(2) = 0 \)[/tex] to [tex]\( f(3) = 2 \)[/tex] (increasing)
- [tex]\( f(3) = 2 \)[/tex] to [tex]\( f(4) = 3 \)[/tex] (increasing)
[tex]\( f(x) \)[/tex] is increasing on the given intervals.
For [tex]\( g(x) \)[/tex]:
[tex]\[ g(x) = -12 \left( \frac{1}{3} \right)^x \][/tex]
As [tex]\( x \)[/tex] increases, [tex]\( \left( \frac{1}{3} \right)^x \)[/tex] decreases, making [tex]\( g(x) \)[/tex] more negative, indicating that [tex]\( g(x) \)[/tex] is decreasing.
Thus, this statement is false.
5. Both functions approach [tex]\( -\infty \)[/tex] as [tex]\( x \)[/tex] approaches [tex]\( -\infty \)[/tex].
For [tex]\( f(x) \)[/tex]:
Based on the table, we don't have information for negative [tex]\( x \)[/tex] values, so it's inconclusive for [tex]\( f(x) \)[/tex].
For [tex]\( g(x) \)[/tex]:
As [tex]\( x \to -\infty \)[/tex],
[tex]\[ \left( \frac{1}{3} \right)^x \to \infty \][/tex]
[tex]\[ -12 \left( \frac{1}{3} \right)^x \to -\infty \][/tex]
Therefore, [tex]\( g(x) \)[/tex] approaches [tex]\( -\infty \)[/tex] as [tex]\( x \to -\infty \)[/tex].
Without information for [tex]\( f \)[/tex], we cannot conclusively state that this is true for both functions. Hence, this statement is also false.
### Conclusion
The true statement about the functions is:
- The functions have the same [tex]\( y \)[/tex]-intercept.
Thus, only the first statement is true.
### Function [tex]\( f(x) \)[/tex]
Function [tex]\( f \)[/tex] is defined by the values given in the table:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 0 & 1 & 2 & 3 & 4 \\ \hline f(x) & -12 & -4 & 0 & 2 & 3 \\ \hline \end{array} \][/tex]
### Function [tex]\( g(x) \)[/tex]
Function [tex]\( g \)[/tex] is given by the equation:
[tex]\[ g(x) = -12 \left( \frac{1}{3} \right)^x \][/tex]
### Analyzing Statements
1. The functions have the same [tex]\( y \)[/tex]-intercept.
The [tex]\( y \)[/tex]-intercept occurs when [tex]\( x = 0 \)[/tex].
For [tex]\( f(x) \)[/tex]:
[tex]\[ f(0) = -12 \][/tex]
For [tex]\( g(x) \)[/tex]:
[tex]\[ g(0) = -12 \left( \frac{1}{3} \right)^0 = -12 \][/tex]
Both functions have [tex]\( y \)[/tex]-intercept at [tex]\( (0, -12) \)[/tex]. Therefore, this statement is true.
2. The functions have the same [tex]\( x \)[/tex]-intercept.
The [tex]\( x \)[/tex]-intercept occurs when the function value is 0.
For [tex]\( f(x) \)[/tex]:
From the table, [tex]\( f(2) = 0 \)[/tex]. Therefore, the [tex]\( x \)[/tex]-intercept for [tex]\( f(x) \)[/tex] is [tex]\( x = 2 \)[/tex].
For [tex]\( g(x) \)[/tex]:
[tex]\[ -12 \left( \frac{1}{3} \right)^x = 0 \][/tex]
This equation does not have any real solution because [tex]\( -12 \left( \frac{1}{3} \right)^x \)[/tex] never equals 0 for any real [tex]\( x \)[/tex]. Therefore, [tex]\( g(x) \)[/tex] has no [tex]\( x \)[/tex]-intercept.
Hence, this statement is false.
3. Both functions approach the same value as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex].
As [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex] for [tex]\( f(x) \)[/tex], the function values seem to increase slowly based on the table. For [tex]\( g(x) \)[/tex]:
[tex]\[ \lim_{x \to \infty} g(x) = \lim_{x \to \infty} -12 \left( \frac{1}{3} \right)^x = 0 \][/tex]
Since function [tex]\( f(x) \)[/tex] does not converge to 0 based on the provided values, this statement is false.
4. Both functions are increasing on all intervals of [tex]\( x \)[/tex].
For [tex]\( f(x) \)[/tex], the table values show:
- [tex]\( f(0) = -12 \)[/tex] to [tex]\( f(1) = -4 \)[/tex] (increasing)
- [tex]\( f(1) = -4 \)[/tex] to [tex]\( f(2) = 0 \)[/tex] (increasing)
- [tex]\( f(2) = 0 \)[/tex] to [tex]\( f(3) = 2 \)[/tex] (increasing)
- [tex]\( f(3) = 2 \)[/tex] to [tex]\( f(4) = 3 \)[/tex] (increasing)
[tex]\( f(x) \)[/tex] is increasing on the given intervals.
For [tex]\( g(x) \)[/tex]:
[tex]\[ g(x) = -12 \left( \frac{1}{3} \right)^x \][/tex]
As [tex]\( x \)[/tex] increases, [tex]\( \left( \frac{1}{3} \right)^x \)[/tex] decreases, making [tex]\( g(x) \)[/tex] more negative, indicating that [tex]\( g(x) \)[/tex] is decreasing.
Thus, this statement is false.
5. Both functions approach [tex]\( -\infty \)[/tex] as [tex]\( x \)[/tex] approaches [tex]\( -\infty \)[/tex].
For [tex]\( f(x) \)[/tex]:
Based on the table, we don't have information for negative [tex]\( x \)[/tex] values, so it's inconclusive for [tex]\( f(x) \)[/tex].
For [tex]\( g(x) \)[/tex]:
As [tex]\( x \to -\infty \)[/tex],
[tex]\[ \left( \frac{1}{3} \right)^x \to \infty \][/tex]
[tex]\[ -12 \left( \frac{1}{3} \right)^x \to -\infty \][/tex]
Therefore, [tex]\( g(x) \)[/tex] approaches [tex]\( -\infty \)[/tex] as [tex]\( x \to -\infty \)[/tex].
Without information for [tex]\( f \)[/tex], we cannot conclusively state that this is true for both functions. Hence, this statement is also false.
### Conclusion
The true statement about the functions is:
- The functions have the same [tex]\( y \)[/tex]-intercept.
Thus, only the first statement is true.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.