Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the roots of the polynomial equation [tex]\(x^4 + x^3 = 4x^2 + 4x\)[/tex], we will systematically solve it step by step.
1. Rewrite the equation:
Start with the given polynomial equation:
[tex]\[ x^4 + x^3 = 4x^2 + 4x \][/tex]
2. Bring all terms to one side:
To facilitate solving, we move all terms to one side of the equation:
[tex]\[ x^4 + x^3 - 4x^2 - 4x = 0 \][/tex]
3. Factor the polynomial:
To solve for [tex]\( x \)[/tex], we can try to factor the polynomial. Notice that all terms have a common factor, which is [tex]\( x \)[/tex]:
[tex]\[ x(x^3 + x^2 - 4x - 4) = 0 \][/tex]
This gives us one root directly:
[tex]\[ x = 0 \][/tex]
4. Solve the remaining polynomial:
Now, we need to solve the cubic equation:
[tex]\[ x^3 + x^2 - 4x - 4 = 0 \][/tex]
Through further factoring or using methods such as the Rational Root Theorem, we can find that the factors of this polynomial include [tex]\( (x + 2) \)[/tex], [tex]\( (x + 1) \)[/tex], and [tex]\( (x - 2) \)[/tex].
This means we can write:
[tex]\[ x^3 + x^2 - 4x - 4 = (x + 2)(x + 1)(x - 2) \][/tex]
5. Find the remaining roots:
Solve for [tex]\( x \)[/tex] from the factored form:
[tex]\[ (x + 2) = 0 \quad \Rightarrow \quad x = -2 \][/tex]
[tex]\[ (x + 1) = 0 \quad \Rightarrow \quad x = -1 \][/tex]
[tex]\[ (x - 2) = 0 \quad \Rightarrow \quad x = 2 \][/tex]
6. Collect all roots:
Combining these solutions, we get the roots of the polynomial equation [tex]\( x^4 + x^3 = 4x^2 + 4x \)[/tex]:
[tex]\[ x = -2, -1, 0, 2 \][/tex]
Therefore, the roots of the given equation [tex]\( x^4 + x^3 = 4x^2 + 4x \)[/tex] are:
[tex]\[ \boxed{-2, -1, 0, 2} \][/tex]
1. Rewrite the equation:
Start with the given polynomial equation:
[tex]\[ x^4 + x^3 = 4x^2 + 4x \][/tex]
2. Bring all terms to one side:
To facilitate solving, we move all terms to one side of the equation:
[tex]\[ x^4 + x^3 - 4x^2 - 4x = 0 \][/tex]
3. Factor the polynomial:
To solve for [tex]\( x \)[/tex], we can try to factor the polynomial. Notice that all terms have a common factor, which is [tex]\( x \)[/tex]:
[tex]\[ x(x^3 + x^2 - 4x - 4) = 0 \][/tex]
This gives us one root directly:
[tex]\[ x = 0 \][/tex]
4. Solve the remaining polynomial:
Now, we need to solve the cubic equation:
[tex]\[ x^3 + x^2 - 4x - 4 = 0 \][/tex]
Through further factoring or using methods such as the Rational Root Theorem, we can find that the factors of this polynomial include [tex]\( (x + 2) \)[/tex], [tex]\( (x + 1) \)[/tex], and [tex]\( (x - 2) \)[/tex].
This means we can write:
[tex]\[ x^3 + x^2 - 4x - 4 = (x + 2)(x + 1)(x - 2) \][/tex]
5. Find the remaining roots:
Solve for [tex]\( x \)[/tex] from the factored form:
[tex]\[ (x + 2) = 0 \quad \Rightarrow \quad x = -2 \][/tex]
[tex]\[ (x + 1) = 0 \quad \Rightarrow \quad x = -1 \][/tex]
[tex]\[ (x - 2) = 0 \quad \Rightarrow \quad x = 2 \][/tex]
6. Collect all roots:
Combining these solutions, we get the roots of the polynomial equation [tex]\( x^4 + x^3 = 4x^2 + 4x \)[/tex]:
[tex]\[ x = -2, -1, 0, 2 \][/tex]
Therefore, the roots of the given equation [tex]\( x^4 + x^3 = 4x^2 + 4x \)[/tex] are:
[tex]\[ \boxed{-2, -1, 0, 2} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.