Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the exact length and width of the TV with a given diagonal length of 26 inches, where the diagonal forms a pair of 30-60-90 right triangles, follow these steps:
1. Understanding the 30-60-90 triangle properties: In a 30-60-90 triangle, the sides follow a specific ratio. The ratio of the lengths of the sides opposite the 30°, 60°, and 90° angles is [tex]\(1 : \sqrt{3} : 2\)[/tex].
2. Diagonal as Hypotenuse: The diagonal of the TV is the hypotenuse of the overall right triangle, which can be considered as the hypotenuse of two 30-60-90 triangles put together. Therefore, it is twice the side opposite the 30° angle.
3. Calculating the shortest side (length):
- The length (shortest side) is opposite the 30° angle in a 30-60-90 triangle.
- Since the hypotenuse (diagonal) is 26 inches, the length opposite the 30° angle (half the hypotenuse of the whole triangle) is:
[tex]\[ \text{Length} = \frac{\text{Hypotenuse}}{2} = \frac{26}{2} = 13 \text{ inches} \][/tex]
4. Calculating the longer side (width):
- The width (longer side) is opposite the 60° angle in a 30-60-90 triangle.
- Given the side opposite the 30° angle (length obtained above) is 13 inches, this can be used to find the width using the ratio [tex]\(1 : \sqrt{3}\)[/tex].
- Therefore, the width is:
[tex]\[ \text{Width} = 13 \times \sqrt{3} \text{ inches} \][/tex]
Therefore, the exact length and width of the TV are 13 inches by [tex]\(13 \sqrt{3}\)[/tex] inches.
The correct answer is:
A. 13 inches by [tex]\(13 \sqrt{3}\)[/tex] inches
1. Understanding the 30-60-90 triangle properties: In a 30-60-90 triangle, the sides follow a specific ratio. The ratio of the lengths of the sides opposite the 30°, 60°, and 90° angles is [tex]\(1 : \sqrt{3} : 2\)[/tex].
2. Diagonal as Hypotenuse: The diagonal of the TV is the hypotenuse of the overall right triangle, which can be considered as the hypotenuse of two 30-60-90 triangles put together. Therefore, it is twice the side opposite the 30° angle.
3. Calculating the shortest side (length):
- The length (shortest side) is opposite the 30° angle in a 30-60-90 triangle.
- Since the hypotenuse (diagonal) is 26 inches, the length opposite the 30° angle (half the hypotenuse of the whole triangle) is:
[tex]\[ \text{Length} = \frac{\text{Hypotenuse}}{2} = \frac{26}{2} = 13 \text{ inches} \][/tex]
4. Calculating the longer side (width):
- The width (longer side) is opposite the 60° angle in a 30-60-90 triangle.
- Given the side opposite the 30° angle (length obtained above) is 13 inches, this can be used to find the width using the ratio [tex]\(1 : \sqrt{3}\)[/tex].
- Therefore, the width is:
[tex]\[ \text{Width} = 13 \times \sqrt{3} \text{ inches} \][/tex]
Therefore, the exact length and width of the TV are 13 inches by [tex]\(13 \sqrt{3}\)[/tex] inches.
The correct answer is:
A. 13 inches by [tex]\(13 \sqrt{3}\)[/tex] inches
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.