Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure, let's solve the problem step by step.
A 45-45-90 triangle is a special type of right triangle where the angles are 45 degrees, 45 degrees, and 90 degrees. Since two of the angles are 45 degrees, this means the triangle is isosceles, and thus the two legs of the triangle are of equal length.
Here is a step-by-step solution:
1. Identify the properties of a 45-45-90 triangle:
- The legs of the triangle are equal in length because it is an isosceles right triangle.
- The hypotenuse is [tex]\(\sqrt{2}\)[/tex] times longer than each leg.
2. Determine the relationship between the legs:
- Let’s denote the length of one leg as [tex]\(a\)[/tex]. Because the legs are equal, the other leg will also have the length [tex]\(a\)[/tex].
3. Calculate the ratio of the lengths of the legs:
- Since both legs are equal, the ratio of the length of one leg to the other is simply
[tex]\[ \text{Ratio} = \frac{a}{a} = 1 \][/tex]
Therefore, the correct answer is:
C. [tex]\(1:1\)[/tex]
The ratio of the length of one leg to the length of the other leg in a 45-45-90 right triangle is [tex]\(1:1\)[/tex].
A 45-45-90 triangle is a special type of right triangle where the angles are 45 degrees, 45 degrees, and 90 degrees. Since two of the angles are 45 degrees, this means the triangle is isosceles, and thus the two legs of the triangle are of equal length.
Here is a step-by-step solution:
1. Identify the properties of a 45-45-90 triangle:
- The legs of the triangle are equal in length because it is an isosceles right triangle.
- The hypotenuse is [tex]\(\sqrt{2}\)[/tex] times longer than each leg.
2. Determine the relationship between the legs:
- Let’s denote the length of one leg as [tex]\(a\)[/tex]. Because the legs are equal, the other leg will also have the length [tex]\(a\)[/tex].
3. Calculate the ratio of the lengths of the legs:
- Since both legs are equal, the ratio of the length of one leg to the other is simply
[tex]\[ \text{Ratio} = \frac{a}{a} = 1 \][/tex]
Therefore, the correct answer is:
C. [tex]\(1:1\)[/tex]
The ratio of the length of one leg to the length of the other leg in a 45-45-90 right triangle is [tex]\(1:1\)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.