Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine an equivalent form of the equation [tex]\(\rho(t) = 20,000 \cdot 2^{\frac{t-7}{10}}\)[/tex] for the bacteria population in the second sample, we need to simplify and verify the given options.
First, let's rewrite the given equation in a more convenient form:
[tex]\[ \rho(t) = 20,000 \cdot 2^{\frac{t-7}{10}} \][/tex]
We can simplify this expression for clarity. Note that the exponent [tex]\(\frac{t-7}{10}\)[/tex] can be broken down using the properties of exponents:
[tex]\[ \rho(t) = 20,000 \cdot 2^{\frac{t}{10} - \frac{7}{10}} \][/tex]
Using the property [tex]\(a^{b-c} = \frac{a^b}{a^c}\)[/tex], we rewrite this as:
[tex]\[ \rho(t) = 20,000 \cdot \frac{2^{\frac{t}{10}}}{2^{\frac{7}{10}}} \][/tex]
Therefore, we simplify the equation:
[tex]\[ \rho(t) = \frac{20,000 \cdot 2^{\frac{t}{10}}}{2^{\frac{7}{10}}} \][/tex]
Now, we compare this simplified form with the given options to see which one is equivalent. The options to consider are:
1. [tex]\(p(t) = \frac{20,000 \cdot 2^{t-7}}{2^{10}}\)[/tex]
2. [tex]\(p(t) = \frac{20,000 \cdot 2^{\frac{t}{10}}}{2^7}\)[/tex]
3. [tex]\(\rho(t) = \frac{20,000 \cdot \sqrt[7]{2^t}}{2^{10}}\)[/tex]
Let's evaluate these options individually:
1. Option 1: [tex]\(\frac{20,000 \cdot 2^{t-7}}{2^{10}}\)[/tex]
Simplifying the exponent in the numerator:
[tex]\[ 2^{t-7} = 2^t \cdot 2^{-7} = \frac{2^t}{2^7} \][/tex]
So:
[tex]\[ \frac{20,000 \cdot 2^{t-7}}{2^{10}} = \frac{20,000 \cdot \frac{2^t}{2^7}}{2^{10}} = \frac{20,000 \cdot 2^t}{2^{7+10}} = \frac{20,000 \cdot 2^t}{2^{17}} \][/tex]
This is not equivalent to [tex]\(\rho(t) = \frac{20,000 \cdot 2^{\frac{t}{10}}}{2^{\frac{7}{10}}}\)[/tex].
2. Option 2: [tex]\(\frac{20,000 \cdot 2^{\frac{t}{10}}}{2^7}\)[/tex]
Simplifying this directly:
[tex]\[ \frac{20,000 \cdot 2^{\frac{t}{10}}}{2^7} = \frac{20,000 \cdot 2^{\frac{t}{10}}}{128} \][/tex]
This is also not equivalent to [tex]\(\rho(t) = \frac{20,000 \cdot 2^{\frac{t}{10}}}{2^{\frac{7}{10}}}\)[/tex].
3. Option 3: [tex]\(\frac{20,000 \cdot \sqrt[7]{2^t}}{2^{10}}\)[/tex]
Writing the square root in exponential form:
[tex]\[ \sqrt[7]{2^t} = (2^t)^{\frac{1}{7}} = 2^{\frac{t}{7}} \][/tex]
So:
[tex]\[ \rho(t) = \frac{20,000 \cdot 2^{\frac{t}{7}}}{2^{10}} \][/tex]
This is certainly not equivalent to [tex]\(\rho(t) = \frac{20,000 \cdot 2^{\frac{t}{10}}}{2^{\frac{7}{10}}}\)[/tex].
Given the analysis:
1. Option 1 is not equivalent to the simplified form.
2. Option 2 is not equivalent to the simplified form.
3. Option 3 is also not equivalent to the simplified form.
Thus, none of the given options [tex]\(( \rho(t) = \frac{20,000 \cdot 2^{t-7}}{2^{10}}, \rho(t) = \frac{20,000 \cdot 2^{\frac{t}{10}}}{2^7}, \text{or} \rho(t) = \frac{20,000 \cdot \sqrt[7]{2^t}}{2^{10}} )\)[/tex] are equivalent to the original expression [tex]\(\rho(t) = 20,000 \cdot 2^{\frac{t-7}{10}}\)[/tex].
First, let's rewrite the given equation in a more convenient form:
[tex]\[ \rho(t) = 20,000 \cdot 2^{\frac{t-7}{10}} \][/tex]
We can simplify this expression for clarity. Note that the exponent [tex]\(\frac{t-7}{10}\)[/tex] can be broken down using the properties of exponents:
[tex]\[ \rho(t) = 20,000 \cdot 2^{\frac{t}{10} - \frac{7}{10}} \][/tex]
Using the property [tex]\(a^{b-c} = \frac{a^b}{a^c}\)[/tex], we rewrite this as:
[tex]\[ \rho(t) = 20,000 \cdot \frac{2^{\frac{t}{10}}}{2^{\frac{7}{10}}} \][/tex]
Therefore, we simplify the equation:
[tex]\[ \rho(t) = \frac{20,000 \cdot 2^{\frac{t}{10}}}{2^{\frac{7}{10}}} \][/tex]
Now, we compare this simplified form with the given options to see which one is equivalent. The options to consider are:
1. [tex]\(p(t) = \frac{20,000 \cdot 2^{t-7}}{2^{10}}\)[/tex]
2. [tex]\(p(t) = \frac{20,000 \cdot 2^{\frac{t}{10}}}{2^7}\)[/tex]
3. [tex]\(\rho(t) = \frac{20,000 \cdot \sqrt[7]{2^t}}{2^{10}}\)[/tex]
Let's evaluate these options individually:
1. Option 1: [tex]\(\frac{20,000 \cdot 2^{t-7}}{2^{10}}\)[/tex]
Simplifying the exponent in the numerator:
[tex]\[ 2^{t-7} = 2^t \cdot 2^{-7} = \frac{2^t}{2^7} \][/tex]
So:
[tex]\[ \frac{20,000 \cdot 2^{t-7}}{2^{10}} = \frac{20,000 \cdot \frac{2^t}{2^7}}{2^{10}} = \frac{20,000 \cdot 2^t}{2^{7+10}} = \frac{20,000 \cdot 2^t}{2^{17}} \][/tex]
This is not equivalent to [tex]\(\rho(t) = \frac{20,000 \cdot 2^{\frac{t}{10}}}{2^{\frac{7}{10}}}\)[/tex].
2. Option 2: [tex]\(\frac{20,000 \cdot 2^{\frac{t}{10}}}{2^7}\)[/tex]
Simplifying this directly:
[tex]\[ \frac{20,000 \cdot 2^{\frac{t}{10}}}{2^7} = \frac{20,000 \cdot 2^{\frac{t}{10}}}{128} \][/tex]
This is also not equivalent to [tex]\(\rho(t) = \frac{20,000 \cdot 2^{\frac{t}{10}}}{2^{\frac{7}{10}}}\)[/tex].
3. Option 3: [tex]\(\frac{20,000 \cdot \sqrt[7]{2^t}}{2^{10}}\)[/tex]
Writing the square root in exponential form:
[tex]\[ \sqrt[7]{2^t} = (2^t)^{\frac{1}{7}} = 2^{\frac{t}{7}} \][/tex]
So:
[tex]\[ \rho(t) = \frac{20,000 \cdot 2^{\frac{t}{7}}}{2^{10}} \][/tex]
This is certainly not equivalent to [tex]\(\rho(t) = \frac{20,000 \cdot 2^{\frac{t}{10}}}{2^{\frac{7}{10}}}\)[/tex].
Given the analysis:
1. Option 1 is not equivalent to the simplified form.
2. Option 2 is not equivalent to the simplified form.
3. Option 3 is also not equivalent to the simplified form.
Thus, none of the given options [tex]\(( \rho(t) = \frac{20,000 \cdot 2^{t-7}}{2^{10}}, \rho(t) = \frac{20,000 \cdot 2^{\frac{t}{10}}}{2^7}, \text{or} \rho(t) = \frac{20,000 \cdot \sqrt[7]{2^t}}{2^{10}} )\)[/tex] are equivalent to the original expression [tex]\(\rho(t) = 20,000 \cdot 2^{\frac{t-7}{10}}\)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.