Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine an equivalent form of the equation [tex]\(\rho(t) = 20,000 \cdot 2^{\frac{t-7}{10}}\)[/tex] for the bacteria population in the second sample, we need to simplify and verify the given options.
First, let's rewrite the given equation in a more convenient form:
[tex]\[ \rho(t) = 20,000 \cdot 2^{\frac{t-7}{10}} \][/tex]
We can simplify this expression for clarity. Note that the exponent [tex]\(\frac{t-7}{10}\)[/tex] can be broken down using the properties of exponents:
[tex]\[ \rho(t) = 20,000 \cdot 2^{\frac{t}{10} - \frac{7}{10}} \][/tex]
Using the property [tex]\(a^{b-c} = \frac{a^b}{a^c}\)[/tex], we rewrite this as:
[tex]\[ \rho(t) = 20,000 \cdot \frac{2^{\frac{t}{10}}}{2^{\frac{7}{10}}} \][/tex]
Therefore, we simplify the equation:
[tex]\[ \rho(t) = \frac{20,000 \cdot 2^{\frac{t}{10}}}{2^{\frac{7}{10}}} \][/tex]
Now, we compare this simplified form with the given options to see which one is equivalent. The options to consider are:
1. [tex]\(p(t) = \frac{20,000 \cdot 2^{t-7}}{2^{10}}\)[/tex]
2. [tex]\(p(t) = \frac{20,000 \cdot 2^{\frac{t}{10}}}{2^7}\)[/tex]
3. [tex]\(\rho(t) = \frac{20,000 \cdot \sqrt[7]{2^t}}{2^{10}}\)[/tex]
Let's evaluate these options individually:
1. Option 1: [tex]\(\frac{20,000 \cdot 2^{t-7}}{2^{10}}\)[/tex]
Simplifying the exponent in the numerator:
[tex]\[ 2^{t-7} = 2^t \cdot 2^{-7} = \frac{2^t}{2^7} \][/tex]
So:
[tex]\[ \frac{20,000 \cdot 2^{t-7}}{2^{10}} = \frac{20,000 \cdot \frac{2^t}{2^7}}{2^{10}} = \frac{20,000 \cdot 2^t}{2^{7+10}} = \frac{20,000 \cdot 2^t}{2^{17}} \][/tex]
This is not equivalent to [tex]\(\rho(t) = \frac{20,000 \cdot 2^{\frac{t}{10}}}{2^{\frac{7}{10}}}\)[/tex].
2. Option 2: [tex]\(\frac{20,000 \cdot 2^{\frac{t}{10}}}{2^7}\)[/tex]
Simplifying this directly:
[tex]\[ \frac{20,000 \cdot 2^{\frac{t}{10}}}{2^7} = \frac{20,000 \cdot 2^{\frac{t}{10}}}{128} \][/tex]
This is also not equivalent to [tex]\(\rho(t) = \frac{20,000 \cdot 2^{\frac{t}{10}}}{2^{\frac{7}{10}}}\)[/tex].
3. Option 3: [tex]\(\frac{20,000 \cdot \sqrt[7]{2^t}}{2^{10}}\)[/tex]
Writing the square root in exponential form:
[tex]\[ \sqrt[7]{2^t} = (2^t)^{\frac{1}{7}} = 2^{\frac{t}{7}} \][/tex]
So:
[tex]\[ \rho(t) = \frac{20,000 \cdot 2^{\frac{t}{7}}}{2^{10}} \][/tex]
This is certainly not equivalent to [tex]\(\rho(t) = \frac{20,000 \cdot 2^{\frac{t}{10}}}{2^{\frac{7}{10}}}\)[/tex].
Given the analysis:
1. Option 1 is not equivalent to the simplified form.
2. Option 2 is not equivalent to the simplified form.
3. Option 3 is also not equivalent to the simplified form.
Thus, none of the given options [tex]\(( \rho(t) = \frac{20,000 \cdot 2^{t-7}}{2^{10}}, \rho(t) = \frac{20,000 \cdot 2^{\frac{t}{10}}}{2^7}, \text{or} \rho(t) = \frac{20,000 \cdot \sqrt[7]{2^t}}{2^{10}} )\)[/tex] are equivalent to the original expression [tex]\(\rho(t) = 20,000 \cdot 2^{\frac{t-7}{10}}\)[/tex].
First, let's rewrite the given equation in a more convenient form:
[tex]\[ \rho(t) = 20,000 \cdot 2^{\frac{t-7}{10}} \][/tex]
We can simplify this expression for clarity. Note that the exponent [tex]\(\frac{t-7}{10}\)[/tex] can be broken down using the properties of exponents:
[tex]\[ \rho(t) = 20,000 \cdot 2^{\frac{t}{10} - \frac{7}{10}} \][/tex]
Using the property [tex]\(a^{b-c} = \frac{a^b}{a^c}\)[/tex], we rewrite this as:
[tex]\[ \rho(t) = 20,000 \cdot \frac{2^{\frac{t}{10}}}{2^{\frac{7}{10}}} \][/tex]
Therefore, we simplify the equation:
[tex]\[ \rho(t) = \frac{20,000 \cdot 2^{\frac{t}{10}}}{2^{\frac{7}{10}}} \][/tex]
Now, we compare this simplified form with the given options to see which one is equivalent. The options to consider are:
1. [tex]\(p(t) = \frac{20,000 \cdot 2^{t-7}}{2^{10}}\)[/tex]
2. [tex]\(p(t) = \frac{20,000 \cdot 2^{\frac{t}{10}}}{2^7}\)[/tex]
3. [tex]\(\rho(t) = \frac{20,000 \cdot \sqrt[7]{2^t}}{2^{10}}\)[/tex]
Let's evaluate these options individually:
1. Option 1: [tex]\(\frac{20,000 \cdot 2^{t-7}}{2^{10}}\)[/tex]
Simplifying the exponent in the numerator:
[tex]\[ 2^{t-7} = 2^t \cdot 2^{-7} = \frac{2^t}{2^7} \][/tex]
So:
[tex]\[ \frac{20,000 \cdot 2^{t-7}}{2^{10}} = \frac{20,000 \cdot \frac{2^t}{2^7}}{2^{10}} = \frac{20,000 \cdot 2^t}{2^{7+10}} = \frac{20,000 \cdot 2^t}{2^{17}} \][/tex]
This is not equivalent to [tex]\(\rho(t) = \frac{20,000 \cdot 2^{\frac{t}{10}}}{2^{\frac{7}{10}}}\)[/tex].
2. Option 2: [tex]\(\frac{20,000 \cdot 2^{\frac{t}{10}}}{2^7}\)[/tex]
Simplifying this directly:
[tex]\[ \frac{20,000 \cdot 2^{\frac{t}{10}}}{2^7} = \frac{20,000 \cdot 2^{\frac{t}{10}}}{128} \][/tex]
This is also not equivalent to [tex]\(\rho(t) = \frac{20,000 \cdot 2^{\frac{t}{10}}}{2^{\frac{7}{10}}}\)[/tex].
3. Option 3: [tex]\(\frac{20,000 \cdot \sqrt[7]{2^t}}{2^{10}}\)[/tex]
Writing the square root in exponential form:
[tex]\[ \sqrt[7]{2^t} = (2^t)^{\frac{1}{7}} = 2^{\frac{t}{7}} \][/tex]
So:
[tex]\[ \rho(t) = \frac{20,000 \cdot 2^{\frac{t}{7}}}{2^{10}} \][/tex]
This is certainly not equivalent to [tex]\(\rho(t) = \frac{20,000 \cdot 2^{\frac{t}{10}}}{2^{\frac{7}{10}}}\)[/tex].
Given the analysis:
1. Option 1 is not equivalent to the simplified form.
2. Option 2 is not equivalent to the simplified form.
3. Option 3 is also not equivalent to the simplified form.
Thus, none of the given options [tex]\(( \rho(t) = \frac{20,000 \cdot 2^{t-7}}{2^{10}}, \rho(t) = \frac{20,000 \cdot 2^{\frac{t}{10}}}{2^7}, \text{or} \rho(t) = \frac{20,000 \cdot \sqrt[7]{2^t}}{2^{10}} )\)[/tex] are equivalent to the original expression [tex]\(\rho(t) = 20,000 \cdot 2^{\frac{t-7}{10}}\)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.