Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the linear function that represents the line given by the point-slope equation [tex]\( y - 8 = \frac{1}{2}(x - 4) \)[/tex], we need to transform it into the slope-intercept form [tex]\( y = mx + b \)[/tex].
Here are the steps:
1. Start with the point-slope form equation:
[tex]\[ y - 8 = \frac{1}{2}(x - 4) \][/tex]
2. Distribute the [tex]\(\frac{1}{2}\)[/tex] on the right-hand side:
[tex]\[ y - 8 = \frac{1}{2} x - \frac{1}{2} \cdot 4 \][/tex]
[tex]\[ y - 8 = \frac{1}{2} x - 2 \][/tex]
3. Isolate [tex]\(y\)[/tex] by adding 8 to both sides of the equation:
[tex]\[ y - 8 + 8 = \frac{1}{2} x - 2 + 8 \][/tex]
[tex]\[ y = \frac{1}{2} x + 6 \][/tex]
Thus, the linear function that represents the line is:
[tex]\[ r(x) = \frac{1}{2} x + 6 \][/tex]
Therefore, the correct option is:
[tex]\[ r(x) = \frac{1}{2} x + 6 \][/tex]
Here are the steps:
1. Start with the point-slope form equation:
[tex]\[ y - 8 = \frac{1}{2}(x - 4) \][/tex]
2. Distribute the [tex]\(\frac{1}{2}\)[/tex] on the right-hand side:
[tex]\[ y - 8 = \frac{1}{2} x - \frac{1}{2} \cdot 4 \][/tex]
[tex]\[ y - 8 = \frac{1}{2} x - 2 \][/tex]
3. Isolate [tex]\(y\)[/tex] by adding 8 to both sides of the equation:
[tex]\[ y - 8 + 8 = \frac{1}{2} x - 2 + 8 \][/tex]
[tex]\[ y = \frac{1}{2} x + 6 \][/tex]
Thus, the linear function that represents the line is:
[tex]\[ r(x) = \frac{1}{2} x + 6 \][/tex]
Therefore, the correct option is:
[tex]\[ r(x) = \frac{1}{2} x + 6 \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.