Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

These tables of values represent continuous functions. In which table do the values represent an exponential function?

A.
\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
1 & 5 \\
\hline
2 & 10 \\
\hline
3 & 20 \\
\hline
4 & 40 \\
\hline
5 & 80 \\
\hline
\end{tabular}

B.
\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
1 & 5 \\
\hline
2 & 9 \\
\hline
3 & 13 \\
\hline
4 & 17 \\
\hline
5 & 21 \\
\hline
\end{tabular}

C.
\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
1 & 16 \\
\hline
2 & 29 \\
\hline
3 & 42 \\
\hline
4 & 55 \\
\hline
\end{tabular}


Sagot :

Let's analyze each table to see if the values represent an exponential function. An exponential function grows by constant ratios rather than by constant differences.

Table A:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline 1 & 5 \\ \hline 2 & 10 \\ \hline 3 & 20 \\ \hline 4 & 40 \\ \hline 5 & 80 \\ \hline \end{tabular} \][/tex]

To check if these values represent an exponential function, we look for a constant ratio between consecutive [tex]\( y \)[/tex] values:
- [tex]\( \frac{10}{5} = 2 \)[/tex]
- [tex]\( \frac{20}{10} = 2 \)[/tex]
- [tex]\( \frac{40}{20} = 2 \)[/tex]
- [tex]\( \frac{80}{40} = 2 \)[/tex]

Each ratio is 2, indicating the values in Table A follow an exponential pattern.

Table B:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline 1 & 5 \\ \hline 2 & 9 \\ \hline 3 & 13 \\ \hline 4 & 17 \\ \hline 5 & 21 \\ \hline \end{tabular} \][/tex]

To check if these values represent an exponential function, we look for a constant ratio between consecutive [tex]\( y \)[/tex] values:
- [tex]\( \frac{9}{5} = 1.8 \)[/tex]
- [tex]\( \frac{13}{9} \approx 1.44 \)[/tex]
- [tex]\( \frac{17}{13} \approx 1.31 \)[/tex]
- [tex]\( \frac{21}{17} \approx 1.24 \)[/tex]

The ratios are not constant. Moreover, if we look for a constant difference:
- [tex]\( 9 - 5 = 4\)[/tex]
- [tex]\( 13 - 9 = 4\)[/tex]
- [tex]\( 17 - 13 = 4\)[/tex]
- [tex]\( 21 - 17 = 4\)[/tex]

There is a constant difference of 4, indicating these values follow a linear pattern, not exponential.

Table C:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline 1 & 16 \\ \hline 2 & 29 \\ \hline 3 & 42 \\ \hline 4 & 55 \\ \hline \end{tabular} \][/tex]

To check if these values represent an exponential function, we look for a constant ratio between consecutive [tex]\( y \)[/tex] values:
- [tex]\( \frac{29}{16} \approx 1.81 \)[/tex]
- [tex]\( \frac{42}{29} \approx 1.45 \)[/tex]
- [tex]\( \frac{55}{42} \approx 1.31 \)[/tex]

The ratios are not constant. Moreover, if we look for a constant difference:
- [tex]\( 29 - 16 = 13 \)[/tex]
- [tex]\( 42 - 29 = 13 \)[/tex]
- [tex]\( 55 - 42 = 13 \)[/tex]

There is a constant difference of 13, indicating these values follow a linear pattern, not exponential.

Based on the analysis, the values in Table A represent an exponential function because they have a constant ratio between consecutive values.