Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which of the given series converges, we need to identify the common ratio [tex]\( r \)[/tex] of each series and check if it satisfies the condition for convergence of a geometric series, which is [tex]\( |r| < 1 \)[/tex].
1. First series: [tex]\( 0.02 + 0.02 + 0.02 + 0.02 + \ldots \)[/tex]
- This is an arithmetic series because each term is the same, not a geometric series.
2. Second series: [tex]\( 4 + 0.08 + 0.0016 + 0.000032 + \ldots \)[/tex]
- To determine the common ratio [tex]\( r \)[/tex], we divide the second term by the first term:
[tex]\[ r = \frac{0.08}{4} = 0.02 \][/tex]
- The common ratio [tex]\( r \)[/tex] is [tex]\( 0.02 \)[/tex].
- Since [tex]\( |0.02| < 1 \)[/tex], this series converges.
3. Third series: [tex]\( 4 + 80 + 1,600 + 32,000 + \ldots \)[/tex]
- To determine the common ratio [tex]\( r \)[/tex], we divide the second term by the first term:
[tex]\[ r = \frac{80}{4} = 20 \][/tex]
- The common ratio [tex]\( r \)[/tex] is [tex]\( 20 \)[/tex].
- Since [tex]\( |20| > 1 \)[/tex], this series does not converge.
4. Fourth series: [tex]\( 0.02 + 0.04 + 0.08 + 0.16 + \ldots \)[/tex]
- To determine the common ratio [tex]\( r \)[/tex], we divide the second term by the first term:
[tex]\[ r = \frac{0.04}{0.02} = 2 \][/tex]
- The common ratio [tex]\( r \)[/tex] is [tex]\( 2 \)[/tex].
- Since [tex]\( |2| > 1 \)[/tex], this series does not converge.
Among the given series, only the second series [tex]\( 4 + 0.08 + 0.0016 + 0.000032 + \ldots \)[/tex] has a common ratio [tex]\( |r| < 1 \)[/tex]. Therefore, it is the only geometric series that converges.
1. First series: [tex]\( 0.02 + 0.02 + 0.02 + 0.02 + \ldots \)[/tex]
- This is an arithmetic series because each term is the same, not a geometric series.
2. Second series: [tex]\( 4 + 0.08 + 0.0016 + 0.000032 + \ldots \)[/tex]
- To determine the common ratio [tex]\( r \)[/tex], we divide the second term by the first term:
[tex]\[ r = \frac{0.08}{4} = 0.02 \][/tex]
- The common ratio [tex]\( r \)[/tex] is [tex]\( 0.02 \)[/tex].
- Since [tex]\( |0.02| < 1 \)[/tex], this series converges.
3. Third series: [tex]\( 4 + 80 + 1,600 + 32,000 + \ldots \)[/tex]
- To determine the common ratio [tex]\( r \)[/tex], we divide the second term by the first term:
[tex]\[ r = \frac{80}{4} = 20 \][/tex]
- The common ratio [tex]\( r \)[/tex] is [tex]\( 20 \)[/tex].
- Since [tex]\( |20| > 1 \)[/tex], this series does not converge.
4. Fourth series: [tex]\( 0.02 + 0.04 + 0.08 + 0.16 + \ldots \)[/tex]
- To determine the common ratio [tex]\( r \)[/tex], we divide the second term by the first term:
[tex]\[ r = \frac{0.04}{0.02} = 2 \][/tex]
- The common ratio [tex]\( r \)[/tex] is [tex]\( 2 \)[/tex].
- Since [tex]\( |2| > 1 \)[/tex], this series does not converge.
Among the given series, only the second series [tex]\( 4 + 0.08 + 0.0016 + 0.000032 + \ldots \)[/tex] has a common ratio [tex]\( |r| < 1 \)[/tex]. Therefore, it is the only geometric series that converges.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.