At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which of the given series converges, we need to identify the common ratio [tex]\( r \)[/tex] of each series and check if it satisfies the condition for convergence of a geometric series, which is [tex]\( |r| < 1 \)[/tex].
1. First series: [tex]\( 0.02 + 0.02 + 0.02 + 0.02 + \ldots \)[/tex]
- This is an arithmetic series because each term is the same, not a geometric series.
2. Second series: [tex]\( 4 + 0.08 + 0.0016 + 0.000032 + \ldots \)[/tex]
- To determine the common ratio [tex]\( r \)[/tex], we divide the second term by the first term:
[tex]\[ r = \frac{0.08}{4} = 0.02 \][/tex]
- The common ratio [tex]\( r \)[/tex] is [tex]\( 0.02 \)[/tex].
- Since [tex]\( |0.02| < 1 \)[/tex], this series converges.
3. Third series: [tex]\( 4 + 80 + 1,600 + 32,000 + \ldots \)[/tex]
- To determine the common ratio [tex]\( r \)[/tex], we divide the second term by the first term:
[tex]\[ r = \frac{80}{4} = 20 \][/tex]
- The common ratio [tex]\( r \)[/tex] is [tex]\( 20 \)[/tex].
- Since [tex]\( |20| > 1 \)[/tex], this series does not converge.
4. Fourth series: [tex]\( 0.02 + 0.04 + 0.08 + 0.16 + \ldots \)[/tex]
- To determine the common ratio [tex]\( r \)[/tex], we divide the second term by the first term:
[tex]\[ r = \frac{0.04}{0.02} = 2 \][/tex]
- The common ratio [tex]\( r \)[/tex] is [tex]\( 2 \)[/tex].
- Since [tex]\( |2| > 1 \)[/tex], this series does not converge.
Among the given series, only the second series [tex]\( 4 + 0.08 + 0.0016 + 0.000032 + \ldots \)[/tex] has a common ratio [tex]\( |r| < 1 \)[/tex]. Therefore, it is the only geometric series that converges.
1. First series: [tex]\( 0.02 + 0.02 + 0.02 + 0.02 + \ldots \)[/tex]
- This is an arithmetic series because each term is the same, not a geometric series.
2. Second series: [tex]\( 4 + 0.08 + 0.0016 + 0.000032 + \ldots \)[/tex]
- To determine the common ratio [tex]\( r \)[/tex], we divide the second term by the first term:
[tex]\[ r = \frac{0.08}{4} = 0.02 \][/tex]
- The common ratio [tex]\( r \)[/tex] is [tex]\( 0.02 \)[/tex].
- Since [tex]\( |0.02| < 1 \)[/tex], this series converges.
3. Third series: [tex]\( 4 + 80 + 1,600 + 32,000 + \ldots \)[/tex]
- To determine the common ratio [tex]\( r \)[/tex], we divide the second term by the first term:
[tex]\[ r = \frac{80}{4} = 20 \][/tex]
- The common ratio [tex]\( r \)[/tex] is [tex]\( 20 \)[/tex].
- Since [tex]\( |20| > 1 \)[/tex], this series does not converge.
4. Fourth series: [tex]\( 0.02 + 0.04 + 0.08 + 0.16 + \ldots \)[/tex]
- To determine the common ratio [tex]\( r \)[/tex], we divide the second term by the first term:
[tex]\[ r = \frac{0.04}{0.02} = 2 \][/tex]
- The common ratio [tex]\( r \)[/tex] is [tex]\( 2 \)[/tex].
- Since [tex]\( |2| > 1 \)[/tex], this series does not converge.
Among the given series, only the second series [tex]\( 4 + 0.08 + 0.0016 + 0.000032 + \ldots \)[/tex] has a common ratio [tex]\( |r| < 1 \)[/tex]. Therefore, it is the only geometric series that converges.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.