Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which of the given series converges, we need to identify the common ratio [tex]\( r \)[/tex] of each series and check if it satisfies the condition for convergence of a geometric series, which is [tex]\( |r| < 1 \)[/tex].
1. First series: [tex]\( 0.02 + 0.02 + 0.02 + 0.02 + \ldots \)[/tex]
- This is an arithmetic series because each term is the same, not a geometric series.
2. Second series: [tex]\( 4 + 0.08 + 0.0016 + 0.000032 + \ldots \)[/tex]
- To determine the common ratio [tex]\( r \)[/tex], we divide the second term by the first term:
[tex]\[ r = \frac{0.08}{4} = 0.02 \][/tex]
- The common ratio [tex]\( r \)[/tex] is [tex]\( 0.02 \)[/tex].
- Since [tex]\( |0.02| < 1 \)[/tex], this series converges.
3. Third series: [tex]\( 4 + 80 + 1,600 + 32,000 + \ldots \)[/tex]
- To determine the common ratio [tex]\( r \)[/tex], we divide the second term by the first term:
[tex]\[ r = \frac{80}{4} = 20 \][/tex]
- The common ratio [tex]\( r \)[/tex] is [tex]\( 20 \)[/tex].
- Since [tex]\( |20| > 1 \)[/tex], this series does not converge.
4. Fourth series: [tex]\( 0.02 + 0.04 + 0.08 + 0.16 + \ldots \)[/tex]
- To determine the common ratio [tex]\( r \)[/tex], we divide the second term by the first term:
[tex]\[ r = \frac{0.04}{0.02} = 2 \][/tex]
- The common ratio [tex]\( r \)[/tex] is [tex]\( 2 \)[/tex].
- Since [tex]\( |2| > 1 \)[/tex], this series does not converge.
Among the given series, only the second series [tex]\( 4 + 0.08 + 0.0016 + 0.000032 + \ldots \)[/tex] has a common ratio [tex]\( |r| < 1 \)[/tex]. Therefore, it is the only geometric series that converges.
1. First series: [tex]\( 0.02 + 0.02 + 0.02 + 0.02 + \ldots \)[/tex]
- This is an arithmetic series because each term is the same, not a geometric series.
2. Second series: [tex]\( 4 + 0.08 + 0.0016 + 0.000032 + \ldots \)[/tex]
- To determine the common ratio [tex]\( r \)[/tex], we divide the second term by the first term:
[tex]\[ r = \frac{0.08}{4} = 0.02 \][/tex]
- The common ratio [tex]\( r \)[/tex] is [tex]\( 0.02 \)[/tex].
- Since [tex]\( |0.02| < 1 \)[/tex], this series converges.
3. Third series: [tex]\( 4 + 80 + 1,600 + 32,000 + \ldots \)[/tex]
- To determine the common ratio [tex]\( r \)[/tex], we divide the second term by the first term:
[tex]\[ r = \frac{80}{4} = 20 \][/tex]
- The common ratio [tex]\( r \)[/tex] is [tex]\( 20 \)[/tex].
- Since [tex]\( |20| > 1 \)[/tex], this series does not converge.
4. Fourth series: [tex]\( 0.02 + 0.04 + 0.08 + 0.16 + \ldots \)[/tex]
- To determine the common ratio [tex]\( r \)[/tex], we divide the second term by the first term:
[tex]\[ r = \frac{0.04}{0.02} = 2 \][/tex]
- The common ratio [tex]\( r \)[/tex] is [tex]\( 2 \)[/tex].
- Since [tex]\( |2| > 1 \)[/tex], this series does not converge.
Among the given series, only the second series [tex]\( 4 + 0.08 + 0.0016 + 0.000032 + \ldots \)[/tex] has a common ratio [tex]\( |r| < 1 \)[/tex]. Therefore, it is the only geometric series that converges.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.