Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

An arithmetic sequence has this recursive formula:
[tex]\[ \left\{\begin{array}{l}
a_1=4 \\
a_n=a_{n-1}-7
\end{array}\right. \][/tex]

What is the explicit formula for this sequence?

A. [tex]\[ a_n=4+(n-7)(-1) \][/tex]

B. [tex]\[ a_n=(-7)+(n-1) 4 \][/tex]

C. [tex]\[ a_n=4+(n-1)(-7) \][/tex]

D. [tex]\[ a_n=(-1)+(n-4)(-7) \][/tex]

Sagot :

To find the explicit formula for the given arithmetic sequence, let's analyze the problem step by step.

We are given the recursive formula:

[tex]\[ \left\{\begin{array}{l} a_1=4 \\ a_n=a_{n-1}-7 \end{array}\right. \][/tex]

Step 1: Identify the first term ([tex]\(a_1\)[/tex]).

The first term [tex]\(a_1\)[/tex] is given as [tex]\(4\)[/tex].

Step 2: Identify the common difference ([tex]\(d\)[/tex]).

The recursive formula [tex]\(a_n = a_{n-1} - 7\)[/tex] indicates that each term is obtained by subtracting 7 from the previous term. Therefore, the common difference [tex]\(d\)[/tex] is [tex]\(-7\)[/tex].

Step 3: Write the general formula for an arithmetic sequence.

The general form of an arithmetic sequence is given by:

[tex]\[ a_n = a_1 + (n - 1) \cdot d \][/tex]

Step 4: Substitute the known values into the general formula.

We have [tex]\(a_1 = 4\)[/tex] and [tex]\(d = -7\)[/tex]. Plug these values into the general formula:

[tex]\[ a_n = 4 + (n - 1) \cdot (-7) \][/tex]

Step 5: Simplify the formula.

Now, we simplify the expression:

[tex]\[ a_n = 4 + (n - 1) \cdot (-7) \][/tex]

Distribute [tex]\(-7\)[/tex] within the parentheses:

[tex]\[ a_n = 4 + n \cdot (-7) - (-7) \][/tex]

[tex]\[ a_n = 4 - 7n + 7 \][/tex]

Combine like terms:

[tex]\[ a_n = 11 - 7n \][/tex]

Hence, the explicit formula for the arithmetic sequence is:

[tex]\[ a_n = 11 - 7n \][/tex]

Step 6: Verify the correct option.

Among the given options:
- A. [tex]\(a_n=4+(n-7)(-1)\)[/tex]
- B. [tex]\(a_n=(-7)+(n-1) 4\)[/tex]
- C. [tex]\(a_n=4+(n-1)(-7)\)[/tex]
- D. [tex]\(a_n=(-1)+(n-4)(-7)\)[/tex]

The correct explicit formula [tex]\(\boxed{C}\)[/tex], which matches our derived formula:

[tex]\[ a_n = 4 + (n - 1)(-7) \][/tex]

Thus, the explicit formula for the given arithmetic sequence is [tex]\(\boxed{C}\)[/tex].